471 research outputs found

    Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    Get PDF
    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0–3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase

    Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    Get PDF
    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0–3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 - 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Long-term outcome of surgery for perianal Crohn's fistula

    Get PDF

    Seasonal Salinization Decreases Spatial Heterogeneity of Sulfate Reducing Activity

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Evidence of sulfate input and reduction in coastal freshwater wetlands is often visible in the black iron monosulfide (FeS) complexes that form in iron rich reducing sediments. Using a modified Indicator of Reduction in Soils (IRIS) method, digital imaging, and geostatistics, we examine controls on the spatial properties of FeS in a coastal wetland fresh-to-brackish transition zone over a multi-month, drought-induced saltwater incursion event. PVC sheets (10 × 15 cm) were painted with an iron oxide paint and incubated vertically belowground and flush with the surface for 24 h along a salt-influenced to freshwater wetland transect in coastal North Carolina, USA. Along with collection of complementary water and soil chemistry data, the size and location of the FeS compounds on the plate were photographed and geostatistical techniques were employed to characterize FeS formation on the square cm scale. Herein, we describe how the saltwater incursion front is associated with increased sulfate loading and decreased aqueous Fe(II) content. This accompanies an increased number of individual FeS complexes that were more uniformly distributed as reflected in a lower Magnitude of Spatial Heterogeneity at all sites except furthest downstream. Future work should focus on streamlining the plate analysis procedure as well as developing a more robust statistical based approach to determine sulfide concentration

    Eosinophilic esophagitis: What can we learn from Crohn’s disease?

    Get PDF
    Eosinophilic esophagitis (EoE) is an emerging esophageal inflammatory disorder affecting children and young adults. As a relatively new disease, EoE is still burdened by frequent diagnostic and therapeutic pitfalls in clinical practice. This manuscript posits a number of similarities with Crohn’s disease, which may help optimize EoE patient management. Commonalities include epidemiologic trends (Westernized diseases, rising incidence, early-life risk factors), diagnostic considerations (symptoms are poor predictors of disease activity, difficulties in disease activity assessment) and therapeutic issues (similar natural history and therapeutic goals, induction and maintenance phases, combination of drug and endoscopic treatment, potential drug interchangeability, long-term unsolved issues). Physicians devoted to EoE should learn from the extraordinary achievements fulfilled in Crohn’s disease: increased disease awareness, multidisciplinary specialized clinics, structured childhood and transition programs, and an ongoing roadmap for personalized treatments, including genetic susceptibility, risk factors for progression, genotype-phenotype correlation, drug monitoring and microbial data

    Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors

    Get PDF
    The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, and a “Venus flytrap” model for the glycine binding site has been suggested by analogy with bacterial periplasmic amino acid binding proteins. By analysis of 10 mutant NMDA receptors, we now show that residues on the NR2A subunit control glutamate potency in recombinant NR1/NR2A receptors, without affecting glycine potency. Furthermore, we provide evidence that, at least for some mutated residues, the reduced potency of glutamate cannot be explained by alteration of gating but has to be caused primarily by impairing the binding of the agonist to the resting state of the receptor. One NR2A mutant, NR2A(T671A), had anEC50for glutamate 1000-fold greater than wild type and a 255-fold reduced affinity for APV, yet it had single-channel openings very similar to those of wild type. Therefore we propose that the glutamate binding site is located on NR2 subunits and (taking our data together with previous work) is not on the NR1 subunit. Our data further imply that each NMDA receptor subunit possesses a binding site for an agonist (glutamate or glycine).</jats:p

    X-ray absorption spectroscopy and X-ray diffraction data for molybdenum minerals and compounds

    Get PDF
    Copyright © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/)This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) CREATE to INSPIRE program and the Canadian Light Source, which is supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada (NSERC), the University of Saskatchewan, the Government of Saskatchewan, Western Economic Diversification Canada, the National Research Council Canada, and the Canadian Institutes of Health Research. This work was also supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant (Grant No. RGPIN-2020-05172) held by MBJL.Peer ReviewedWe report Mo K- and LIII-edge X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) data collected for 15 molybdenum minerals and compounds sourced from museum collections, mineral dealers, and chemical suppliers. The samples were finely ground and analyzed at the Canadian Light Source synchrotron (Saskatoon, Canada). The L III-edge XAS data were collected in fluorescence and total electron yield mode, while the K-edge XAS data were collected in transmission and fluorescence modes. Molybdenum L III-edge spectra cover the X-ray absorption near edge structure (XANES) region and Mo K-edge spectra cover the extended X-ray absorption fine structure (EXAFS) region. Tabulated XAS data are provided to support analysis of XAS data obtained for geological or environmental research. Furthermore, Mo K-edge EXAFS and L III-edge XANES spectra, the k3 weighted oscillatory χ(k) functions, and the Fourier-transforms in χ(R) of these K-edge data are presented graphically. Corresponding XRD data were collected as two-dimensional images against an area detector and integrated to form line scans. The data were collected at a wavelength of 0.68866 Å (18 keV) and is tabulated and presented graphically over a 0-40 °2Q range. This dataset is intended to be used as reference material for a variety of rare and common Mo phases

    A prospective evaluation of the predictive value of faecal calprotectin in quiescent Crohn’s disease

    Get PDF
    Background: The faecal calprotectin (FC) test is a non-invasive marker for gastrointestinal inflammation. Aim: To determine whether higher FC levels in individuals with quiescent Crohn’s disease are associated with clinical relapse over the ensuing 12 months.&lt;p&gt;&lt;/p&gt; Methods: A single centre prospective study was undertaken in Crohn's disease patients in clinical remission attending for routine review. The receiver operating characteristic (ROC) curve for the primary endpoint of clinical relapse by 12 months, based on FC at baseline, was calculated. Kaplan-Meier curves of time to relapse were based on the resulting optimal FC cutoff for predicting relapse.&lt;p&gt;&lt;/p&gt; Results: Of 97 patients recruited, 92 were either followed up for 12 months without relapsing, or reached the primary endpoint within that period. Of these, 10 (11%) had relapsed by 12 months. The median FC was lower for non-relapsers, 96µg/g (IQR 39-237), than for relapsers, 414µg/g (IQR 259-590), (p=0.005). The area under the ROC curve to predict relapse using FC was 77.4%. An optimal cutoff FC value of 240µg/g to predict relapse of quiescent Crohn’s had sensitivity of 80.0% and specificity of 74.4%. Negative predictive value was 96.8% and positive predictive value was 27.6%. FC≥240μg/g was associated with likelihood of relapse 5.7 (95% CI 1.9-17.3) times higher within 2.3 years than lower values (p=0.002).&lt;p&gt;&lt;/p&gt; Conclusions: In this prospective dataset, FC appears to be a useful, non-invasive tool to help identify quiescent Crohn’s disease patients at a low risk of relapse over the ensuing 12 months. FC of 240µg/g was the optimal cutoff in this cohort.&lt;p&gt;&lt;/p&gt
    corecore