31,648 research outputs found
3D simulations of pillars formation around HII regions: the importance of shock curvature
Radiative feedback from massive stars is a key process to understand how HII
regions may enhance or inhibit star formation in pillars and globules at the
interface with molecular clouds. We aim to contribute to model the interactions
between ionization and gas clouds to better understand the processes at work.
We study in detail the impact of modulations on the cloud-HII region interface
and density modulations inside the cloud. We run three-dimensional
hydrodynamical simulations based on Euler equations coupled with gravity using
the HERACLES code. We implement a method to solve ionization/recombination
equations and we take into account typical heating and cooling processes at
work in the interstellar medium and due to ionization/recombination physics. UV
radiation creates a dense shell compressed between an ionization front and a
shock ahead. Interface modulations produce a curved shock that collapses on
itself leading to stable growing pillar-like structures. The narrower the
initial interface modulation, the longer the resulting pillar. We interpret
pillars resulting from density modulations in terms of the ability of these
density modula- tions to curve the shock ahead the ionization front. The shock
curvature is a key process to understand the formation of structures at the
edge of HII regions. Interface and density modulations at the edge of the cloud
have a direct impact on the morphology of the dense shell during its formation.
Deeper in the cloud, structures have less influence due to the high densities
reached by the shell during its expansion.Comment: Accepted by A&A 03/11/201
The Arecibo Dual-Beam Survey: Arecibo and VLA Observations
The Arecibo Dual-Beam Survey is a "blind" 21 cm search for galaxies covering
\~430 deg^2 of sky. We present the data from the detection survey as well as
from the follow-up observations to confirm detections and improve positions and
flux measurements. We find 265 galaxies, many of which are extremely low
surface brightness. Some of these previously uncataloged galaxies lie within
the zone of avoidance where they are obscured by the gas and dust in our
Galaxy. 81 of these sources are not previously cataloged optically and there
are 11 galaxies that have no associated optical counterpart or are only
tentatively associated with faint wisps of nebulosity on the Digitized Sky
Survey images. We discuss the properties of the survey and in particular we
make direct determinations of the completeness and reliability of the sample.
The behavior of the completeness and its dependencies is essential for
determining the HI mass function. We leave the discussion of the mass function
for a later paper, but do note that we find many low surface brightness
galaxies and 7 sources with M_HI < 10^8 Msolar.Comment: 23 pages, 20 figures, accepted ApJS. For tables 2 and 3 only the
first page has been included. ASCII tables are provided separatel
Anisotropy and universality: Critical Binder cumulant of the two-dimensional Ising model
We reanalyze transfer matrix and Monte Carlo results for the critical Binder
cumulant U* of an anisotropic two-dimensional Ising model on a square lattice
in a square geometry with periodic boundary conditions. Spins are coupled
between nearest neighboring sites and between next-nearest neighboring sites
along one of the lattice diagonals. We find that U* depends only on the
asymptotic critical long-distance features of the anisotropy, irrespective of
its realization through ferromagnetic or antiferromagnetic next-nearest
neighbor couplings. We modify an earlier renormalization-group calculation to
obtain a quantitative description of the anisotropy dependence of U*. Our
results support our recent claim towards the validity of universality for
critical phenomena in the presence of a weak anisotropy.Comment: 4 pages, 2 figures; one reference and some clarifications adde
Electronic transport in quantum cascade structures
The transport in complex multiple quantum well heterostructures is
theoretically described. The model is focused on quantum cascade detectors,
which represent an exciting challenge due to the complexity of the structure
containing 7 or 8 quantum wells of different widths. Electronic transport can
be fully described without any adjustable parameter. Diffusion from one subband
to another is calculated with a standard electron-optical phonon hamiltonian,
and the electronic transport results from a parallel flow of electrons using
all the possible paths through the different subbands. Finally, the resistance
of such a complex device is given by a simple expression, with an excellent
agreement with experimental results. This relation involves the sum of
transitions rates between subbands, from one period of the device to the next
one. This relation appears as an Einstein relation adapted to the case of
complex multiple quantum structures.Comment: 6 pages, 5 figures, 1 tabl
Gravitational Waveguides in Cosmology
We discuss the possibility that, besides the usual gravitational lensing,
there may exist a sort of gravitational waveguiding in cosmology which could
explain some anomalous phenomena which cannot be understood by the current
gravitational lensing models as the existence of "brothers" objects having
different brilliancy but similar spectra and redshifts posed on the sky with
large angular distance. Furthermore, such a phenomena could explain the huge
luminosities coming from quasars using the cosmological structures as
selfoc-type or planar waveguide. We describe the gravitational waveguide theory
and then we discuss possible realizations in cosmology.Comment: 14 pages, latex, submitted to Int. Jou. Mod. Phys.
Optical Spin Orientation under Inter- and Intra-Subband Transitions in QWs
It is shown that absorption of circularly polarized infrared radiation
achieved by inter-subband and intra-subband (Drude-like) transitions results in
a monopolar spin orientation of free carriers. The monopolar spin polarization
in zinc-blende-based quantum wells (QWs) is demonstrated by the observation of
the spin-galvanic and circular photogalvanic effects. It is shown that
monopolar spin orientation in n-type QWs becomes possible if an admixture of
valence band states to the conduction band wave function and the spin-orbit
splitting of the valence band are taken into account
The MUCHFUSS photometric campaign
Hot subdwarfs (sdO/Bs) are the helium-burning cores of red giants, which lost
almost all of their hydrogen envelopes. This mass loss is often triggered by
common envelope interactions with close stellar or even substellar companions.
Cool companions like late-type stars or brown dwarfs are detectable via
characteristic light curve variations like reflection effects and often also
eclipses. To search for such objects we obtained multi-band light curves of 26
close sdO/B binary candidates from the MUCHFUSS project with the BUSCA
instrument. We discovered a new eclipsing reflection effect system
(~d) with a low-mass M dwarf companion ().
Three more reflection effect binaries found in the course of the campaign were
already published, two of them are eclipsing systems, in one system only
showing the reflection effect but no eclipses the sdB primary is found to be
pulsating. Amongst the targets without reflection effect a new long-period sdB
pulsator was discovered and irregular light variations were found in two sdO
stars. The found light variations allowed us to constrain the fraction of
reflection effect binaries and the substellar companion fraction around sdB
stars. The minimum fraction of reflection effect systems amongst the close sdB
binaries might be greater than 15\% and the fraction of close substellar
companions in sdB binaries might be as high as . This would result in a
close substellar companion fraction to sdB stars of about 3\%. This fraction is
much higher than the fraction of brown dwarfs around possible progenitor
systems, which are solar-type stars with substellar companions around 1 AU, as
well as close binary white dwarfs with brown dwarf companions. This might be a
hint that common envelope interactions with substellar objects are
preferentially followed by a hot subdwarf phase.Comment: accepted for A&
The Arecibo Dual-Beam Survey: The HI Mass Function of Galaxies
We use the HI-selected galaxy sample from the Arecibo Dual-Beam Survey
(Rosenberg & Schneider 2000) to determine the shape of the HI mass function of
galaxies in the local universe using both the step-wise maximum likelihood and
the 1/V_tot methods. Our survey region spanned all 24 hours of right ascension
at selected declinations between 8 and 29 degrees covering ~430 deg^2 of sky in
the main beam. The survey is not as deep as some previous Arecibo surveys, but
it has a larger total search volume and samples a much larger area of the sky.
We conducted extensive tests on all aspects of the galaxy detection process,
allowing us to empirically correct for our sensitivity limits, unlike the
previous surveys. The mass function for the entire sample is quite steep, with
a power-law slope of \alpha ~ -1.5. We find indications that the slope of the
HI mass function is flatter near the Virgo cluster, suggesting that
evolutionary effects in high density environments may alter the shape of the HI
mass function. These evolutionary effects may help to explain differences in
the HI mass function derived by different groups. We are sensitive to the most
massive sources (log M > 5x10^10 M\solar) over most of the declination range,
\~1 sr, and do not detect any massive low surface brightness galaxies. These
statistics restrict the population of Malin 1-like galaxies to <5.5x10^-6
Mpc^-3.Comment: ApJ accepted, 12 page
- …