19 research outputs found

    Hf–Zr anomalies in clinopyroxene from mantle xenoliths from France and Poland: implications for Lu–Hf dating of spinel peridotite lithospheric mantle

    Get PDF
    Clinopyroxenes in some fresh anhydrous spinel peridotite mantle xenoliths from the northern Massif Central (France) and Lower Silesia (Poland), analysed for a range of incompatible trace elements by laser ablation inductively coupled plasma mass spectrometry, show unusually strong negative anomalies in Hf and Zr relative to adjacent elements Sm and Nd, on primitive mantle-normalised diagrams. Similar Zr–Hf anomalies have only rarely been reported from clinopyroxene in spinel peridotite mantle xenoliths worldwide, and most are not as strong as the examples reported here. Low Hf contents give rise to a wide range of Lu/Hf ratios, which over geological time would result in highly radiogenic ΔHf values, decoupling them from ΔNd ratios. The high 176Lu/177Hf could in theory produce an isochronous relationship with 176Hf/177Hf over time; an errorchron is shown by clinopyroxene from mantle xenoliths from the northern Massif Central. However, in a review of the literature, we show that most mantle spinel peridotites do not show such high Lu/Hf ratios in their constituent clinopyroxenes, because they lack the distinctive Zr–Hf anomaly, and this limits the usefulness of the application of the Lu–Hf system of dating to garnet-free mantle rocks. Nevertheless, some mantle xenoliths from Poland or the Czech Republic may be amenable to Hf-isotope dating in the future

    Problems in obtaining precise and accurate Sr isotope analysis from geological materials using laser ablation MC-ICPMS

    Get PDF
    This paper reviews the problems encountered in eleven studies of Sr isotope analysis using laser ablation multicollector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) in the period 1995–2006. This technique has been shown to have great potential, but the accuracy and precision are limited by: (1) large instrumental mass discrimination, (2) laser-induced isotopic and elemental fractionations and (3) molecular interferences. The most important isobaric interferences are Kr and Rb, whereas Ca dimer/argides and doubly charged rare earth elements (REE) are limited to sample materials which contain substantial amounts of these elements. With modern laser (193 nm) and MC-ICPMS equipment, minerals with >500 ppm Sr content can be analysed with a precision of better than 100 ppm and a spatial resolution (spot size) of approximately 100 Όm. The LA MC-ICPMS analysis of 87Sr/86Sr of both carbonate material and plagioclase is successful in all reported studies, although the higher 84Sr/86Sr ratios do suggest in some cases an influence of Ca dimer and/or argides. High Rb/Sr (>0.01) materials have been successfully analysed by carefully measuring the 85Rb/87Rb in standard material and by applying the standard-sample bracketing method for accurate Rb corrections. However, published LA-MC-ICPMS data on clinopyroxene, apatite and sphene records differences when compared with 87Sr/86Sr measured by thermal ionisation mass spectrometry (TIMS) and solution MC-ICPMS. This suggests that further studies are required to ensure that the most optimal correction methods are applied for all isobaric interferences

    Wyoming craton mantle lithosphere: reconstructions based on xenocrysts from Sloan and Kelsey Lake kimberlites

    No full text
    Book synopsis: The structure of the lithospheric mantle of the Wyoming craton beneath two Paleozoic kimberlite pipes, Sloan and Kelsey Lake 1 in Colorado, was reconstructed using single-grain thermobarometry for a large data set (>2,600 EPMA analyses of xenocrysts and mineral intergrowths). Pyrope compositions from both pipes relate to the lherzolitic field (up to 14 wt% Cr2O3) with a few deviations in CaO to harzburgitic field for KL-1 garnets. Clinopyroxene variations (Cr-diopsides and omphacites) from the Sloan pipe show similarities with those from Daldyn kimberlites, Yakutia, and from kimberlites in the central part of the Slave craton, while KL-1 Cpx resemble those from the Alakit kimberlites in Yakutia that sample metasomatized peridotites. LAM ICP analyses recalculated to parental melts for clinopyroxenes from Sloan resemble contaminated protokimberlite melts, while clinopyroxenes from KL-1 show metasomatism by subduction fluids. Melts calculated from garnets from both pipes show peaks for Ba, Sr and U, and HFSE troughs, typical of subduction-related melts. Parental melts calculated for ilmenites from Sloan suggest derivation from highly differentiated melts, or melting of Ilm-bearing metasomatites, while those from Kelsey Lake do not display extreme HFSE enrichment. Three P-Fe# (where Fe# = Fe/(Fe + Mg) in atomic units) trends within the mantle lithosphere beneath Sloan have been obtained using monomineral thermobarometry. At the base, the trends reveal melt metasomatized (possibly sheared) peridotites (Fe# = 13–15 %), refertilized peridotites (Fe# = 10–11 %) and primary mantle peridotites (Fe# = 7–9 %). Anomalous heating was found at depths equivalent to 4.0 and 3.0–2.0 GPa. The mantle section beneath KL-1 is widely metasomatized with several stages of refertilization with dispersed Ilm–Cpx trends. The step-like subadibatic heating in the mantle column beneath the Sloan pipe is strong in the base and the middle part and weaker within 2–3 GPa. Heating beneath the KL-1 pipe is more evident in the base and middle part from 7.0 to 3.0 GPa

    Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway

    No full text
    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the extraction of large amounts of mel

    The Lages diatremes: mineral composition and petrological implications

    No full text
    Chemical data of heavy minerals from Lages diatremes in southern Brazil have been studied with the aim of characterizing the sample source(s). Three groups of minerals are recognized: I) aluminian-chromian pyroxene, pyrope garnet and chromian spinel, which represent disaggregated fragments of spinel, spinel+garnet and garnet facies peridotite; II) low-Cr aluminian pyroxene that occurs as megacrysts are high pressure phases (7-12 kb) being crystallized from an alkaline-like evolving magma; III) low-Cr aluminian diopside of crustal origin. Evidence of carbonatitic cryptic metasomatic enrichment is shown by clinopyroxenes of Groups I and II. The data do not support a kimberlitic affinity as it has been suggested for the diatremes. Rather, they are interpreted as vents related to the alkaline magmatism affecting the area in Late Cretaceous. The alkaline parental magma of the pyroxene megacrysts was generated from a metasomatized mantle at garnet facies that incorporated fragments of the surrounding still fertile mantle. Presumably at spinel-facies level the magma began to fractionate the megacrysts, whose crystallization proceeded over a large range of falling pressure and temperature. The chemical similarities between Group III clinopyroxenes and those from the differentiated lithotypes indicate that the magma carried this mineral phase on its evolution, at crustal conditions, towards a more evolved alkaline composition. Still, a non-cognate origin for the Group III clinopyroxenes cannot be discarded.<br>Dados quĂ­micos de minerais pesados dos diatremas de Lages no sul do Brasil foram estudados com o propĂłsito de caracterizar as fontes das rochas. TrĂȘs grupos de minerais sĂŁo reconhecidos: I) piroxĂȘnio aluminoso-cromĂ­fero, granada piropo e espinĂ©lio cromĂ­fero, representando fragmentos desagregados de espinĂ©lio, espinĂ©lio+granada e granada da fĂĄcies peridotito; II) piroxĂȘnio aluminoso com baixo Cr, correspondendo a megacristais, com as fases de alta pressĂŁo (7-12 kb) cristalizadas a partir de magma alcalino em evolução; III) diopsĂ­dio aluminoso com baixo Cr e origem crustal. ClinopiroxĂȘnios dos Grupos I e II mostram evidĂȘncias de enriquecimento metassomĂĄtico crĂ­ptico de natureza carbonatĂ­tica. Os dados nĂŁo confirmam a afinidade kimberlĂ­tica sugerida para esses diatremas. Ao contrĂĄrio, eles sĂŁo interpretados como condutos relacionados ao magmatismo alcalino que afetou a ĂĄrea no CretĂĄceo Superior. O magma parental alcalino dos megacristais de piroxĂȘnio foi originado a partir de um manto metassomatizado na fĂĄcies granada que aprisionou fragmentos do ainda fĂ©rtil manto adjacente. Presumivelmente na fĂĄcies espinĂ©lio teve inĂ­cio o fracionamento dos megacristais, cuja cristalização se deu em condiçÔes de pressĂŁo e temperatura decrescentes. As similaridades entre os clinopiroxĂȘnios do Grupo III e aqueles dos litotipos mais diferenciados sugere que essa fase mineral foi transportada pelo magma no curso de sua evolução, em condiçÔes crustais, para uma composição alcalina mais evoluĂ­da. Ainda, uma formação nĂŁo-cogenĂ©tica para os clinopiroxĂȘnios do Grupo III nĂŁo pode ser descartada
    corecore