56 research outputs found

    Therapeutic efficacy of alpha-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two randomised, double-blind, placebo-controlled trials have investigated the efficacy of IV alpha-1 antitrypsin (AAT) augmentation therapy on emphysema progression using CT densitometry.</p> <p>Methods</p> <p>Data from these similar trials, a 2-center Danish-Dutch study (n = 54) and the 3-center EXAcerbations and CT scan as Lung Endpoints (EXACTLE) study (n = 65), were pooled to increase the statistical power. The change in 15<sup>th </sup>percentile of lung density (PD15) measured by CT scan was obtained from both trials. All subjects had 1 CT scan at baseline and at least 1 CT scan after treatment. Densitometric data from 119 patients (AAT [Alfalastin<sup>® </sup>or Prolastin<sup>®</sup>], n = 60; placebo, n = 59) were analysed by a statistical/endpoint analysis method. To adjust for lung volume, volume correction was made by including the change in log-transformed total lung volume as a covariate in the statistical model.</p> <p>Results</p> <p>Mean follow-up was approximately 2.5 years. The mean change in lung density from baseline to last CT scan was -4.082 g/L for AAT and -6.379 g/L for placebo with a treatment difference of 2.297 (95% CI, 0.669 to 3.926; p = 0.006). The corresponding annual declines were -1.73 and -2.74 g/L/yr, respectively.</p> <p>Conclusions</p> <p>The overall results of the combined analysis of 2 separate trials of comparable design, and the only 2 controlled clinical trials completed to date, has confirmed that IV AAT augmentation therapy significantly reduces the decline in lung density and may therefore reduce the future risk of mortality in patients with AAT deficiency-related emphysema.</p> <p>Trial registration</p> <p>The EXACTLE study was registered in ClinicalTrials.gov as 'Antitrypsin (AAT) to Treat Emphysema in AAT-Deficient Patients'; ClinicalTrials.gov Identifier: NCT00263887.</p

    Problems in dealing with missing data and informative censoring in clinical trials

    Get PDF
    A common problem in clinical trials is the missing data that occurs when patients do not complete the study and drop out without further measurements. Missing data cause the usual statistical analysis of complete or all available data to be subject to bias. There are no universally applicable methods for handling missing data. We recommend the following: (1) Report reasons for dropouts and proportions for each treatment group; (2) Conduct sensitivity analyses to encompass different scenarios of assumptions and discuss consistency or discrepancy among them; (3) Pay attention to minimize the chance of dropouts at the design stage and during trial monitoring; (4) Collect post-dropout data on the primary endpoints, if at all possible; and (5) Consider the dropout event itself an important endpoint in studies with many

    Topical Application of Activity-based Probes for Visualization of Brain Tumor Tissue

    Get PDF
    Several investigators have shown the utility of systemically delivered optical imaging probes to image tumors in small animal models of cancer. Here we demonstrate an innovative method for imaging tumors and tumor margins during surgery. Specifically, we show that optical imaging probes topically applied to tumors and surrounding normal tissue rapidly differentiate between tissues. In contrast to systemic delivery of optical imaging probes which label tumors uniformly over time, topical probe application results in rapid and robust probe activation that is detectable as early as 5 minutes following application. Importantly, labeling is primarily associated with peri-tumor spaces. This methodology provides a means for rapid visualization of tumor and potentially infiltrating tumor cells and has potential applications for directed surgical excision of tumor tissues. Furthermore, this technology could find use in surgical resections for any tumors having differential regulation of cysteine cathepsin activity

    Histo-Blood Group Gene Polymorphisms as Potential Genetic Modifiers of Infection and Cystic Fibrosis Lung Disease Severity

    Get PDF
    The pulmonary phenotype in cystic fibrosis (CF) is variable; thus, environmental and genetic factors likely contribute to clinical heterogeneity. We hypothesized that genetically determined ABO histo-blood group antigen (ABH) differences in glycosylation may lead to differences in microbial binding by airway mucus, and thus predispose to early lung infection and more severe lung disease in a subset of patients with CF. infection in the severe or mild groups. Multivariate analyses of other clinical phenotypes, including gender, asthma, and meconium ileus demonstrated no differences between groups based on ABH type. infection, nor was there any association with other clinical phenotypes in a group of 808 patients homozygous for the ΔF508 mutation

    FRAP Analysis on Red Alga Reveals the Fluorescence Recovery Is Ascribed to Intrinsic Photoprocesses of Phycobilisomes than Large-Scale Diffusion

    Get PDF
    BACKGROUND: Phycobilisomes (PBsomes) are the extrinsic antenna complexes upon the photosynthetic membranes in red algae and most cyanobacteria. The PBsomes in the cyanobacteria has been proposed to present high lateral mobility on the thylakoid membrane surface. In contrast, direct measurement of PBsome motility in red algae has been lacking so far. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we investigated the dynamics of PBsomes in the unicellular red alga Porphyridium cruentum in vivo and in vitro, using fluorescence recovery after photobleaching (FRAP). We found that part of the fluorescence recovery could be detected in both partially- and wholly-bleached wild-type and mutant F11 (UTEX 637) cells. Such partial fluorescence recovery was also observed in glutaraldehyde-treated and betaine-treated cells in which PBsome diffusion should be restricted by cross-linking effect, as well as in isolated PBsomes immobilized on the glass slide. CONCLUSIONS/SIGNIFICANCE: On the basis of our previous structural results showing the PBsome crowding on the native photosynthetic membrane as well as the present FRAP data, we concluded that the fluorescence recovery observed during FRAP experiment in red algae is mainly ascribed to the intrinsic photoprocesses of the bleached PBsomes in situ, rather than the rapid diffusion of PBsomes on thylakoid membranes in vivo. Furthermore, direct observations of the fluorescence dynamics of phycoerythrins using FRAP demonstrated the energetic decoupling of phycoerythrins in PBsomes against strong excitation light in vivo, which is proposed as a photoprotective mechanism in red algae attributed by the PBsomes in response to excess light energy
    corecore