35 research outputs found

    Critical Casimir effect in classical binary liquid mixtures

    Full text link
    If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy (TIRM), with femto-Newton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.Comment: 30 pages, 17 figure

    Polymer depletion interaction between two parallel repulsive walls

    Get PDF
    The depletion interaction between two parallel repulsive walls confining a dilute solution of long and flexible polymer chains is studied by field-theoretic methods. Special attention is paid to self-avoidance between chain monomers relevant for polymers in a good solvent. Our direct approach avoids the mapping of the actual polymer chains on effective hard or soft spheres. We compare our results with recent Monte Carlo simulations [A. Milchev and K. Binder, Eur. Phys. J. B 3, 477 (1998)] and with experimental results for the depletion interaction between a spherical colloidal particle and a planar wall in a dilute solution of nonionic polymers [D. Rudhardt, C. Bechinger, and P. Leiderer, Phys. Rev. Lett. 81, 1330 (1998)].Comment: 17 pages, 3 figures. Final version as publishe

    Critical dynamics in thin films

    Full text link
    Critical dynamics in film geometry is analyzed within the field-theoretical approach. In particular we consider the case of purely relaxational dynamics (Model A) and Dirichlet boundary conditions, corresponding to the so-called ordinary surface universality class on both confining boundaries. The general scaling properties for the linear response and correlation functions and for dynamic Casimir forces are discussed. Within the Gaussian approximation we determine the analytic expressions for the associated universal scaling functions and study quantitatively in detail their qualitative features as well as their various limiting behaviors close to the bulk critical point. In addition we consider the effects of time-dependent fields on the fluctuation-induced dynamic Casimir force and determine analytically the corresponding universal scaling functions and their asymptotic behaviors for two specific instances of instantaneous perturbations. The universal aspects of nonlinear relaxation from an initially ordered state are also discussed emphasizing the different crossovers that occur during this evolution. The model considered is relevant to the critical dynamics of actual uniaxial ferromagnetic films with symmetry-preserving conditions at the confining surfaces and for Monte Carlo simulations of spin system with Glauber dynamics and free boundary conditions.Comment: 64 pages, 21 figure

    Hard-Sphere Fluids in Contact with Curved Substrates

    Full text link
    The properties of a hard-sphere fluid in contact with hard spherical and cylindrical walls are studied. Rosenfeld's density functional theory (DFT) is applied to determine the density profile and surface tension Îł\gamma for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid to investigate the curvature dependence and the possible existence of a contribution to Îł\gamma that is proportional to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at infinite dilution we provide an analytical expression for the surface tension of a hard-sphere fluid close to arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results show no signs for the existence of a logarithmic term in the curvature dependence of Îł\gamma.Comment: 15 pages, 6 figure

    Critical adsorption near edges

    Get PDF
    Symmetry breaking surface fields give rise to nontrivial and long-ranged order parameter profiles for critical systems such as fluids, alloys or magnets confined to wedges. We discuss the properties of the corresponding universal scaling functions of the order parameter profile and the two-point correlation function and determine the critical exponents eta_parallel and eta_perpendicular for the so-called normal transition.Comment: 22 pages, 5 figures, accepted for publication in PR

    Fluctuation - induced forces in critical fluids

    Full text link
    The current knowledge about fluctuation - induced long - ranged forces is summarized. Reference is made in particular to fluids near critical points, for which some new insight has been obtained recently. Where appropiate, results of analytic theory are compared with computer simulations and experiments.Comment: Topical review, 24 pages RevTeX, 6 figure

    Normal and Lateral Casimir Forces between Deformed Plates

    Get PDF
    The Casimir force between macroscopic bodies depends strongly on their shape and orientation. To study this geometry dependence in the case of two deformed metal plates, we use a path integral quantization of the electromagnetic field which properly treats the many-body nature of the interaction, going beyond the commonly used pairwise summation (PWS) of van der Waals forces. For arbitrary deformations we provide an analytical result for the deformation induced change in Casimir energy, which is exact to second order in the deformation amplitude. For the specific case of sinusoidally corrugated plates, we calculate both the normal and the lateral Casimir forces. The deformation induced change in the Casimir interaction of a flat and a corrugated plate shows an interesting crossover as a function of the ratio of the mean platedistance H to the corrugation length \lambda: For \lambda \ll H we find a slower decay \sim H^{-4}, compared to the H^{-5} behavior predicted by PWS which we show to be valid only for \lambda \gg H. The amplitude of the lateral force between two corrugated plates which are out of registry is shown to have a maximum at an optimal wavelength of \lambda \approx 2.5 H. With increasing H/\lambda \gtrsim 0.3 the PWS approach becomes a progressively worse description of the lateral force due to many-body effects. These results may be of relevance for the design and operation of novel microelectromechanical systems (MEMS) and other nanoscale devices.Comment: 20 pages, 5 figure
    corecore