1,895 research outputs found

    Topological analysis of polymeric melts: Chain length effects and fast-converging estimators for entanglement length

    Full text link
    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_e which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive and test new estimators which eliminate these systematic errors using information obtainable from the variation of entanglement characteristics with chain length. The new estimators produce accurate results for N_e from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.Comment: Major revisions. Developed near-ideal estimators which operate on multiple chain lengths. Now test these on two very different model polymers

    Angular Correlations in Internal Pair Conversion of Aligned Heavy Nuclei

    Get PDF
    We calculate the spatial correlation of electrons and positrons emitted by internal pair conversion of Coulomb excited nuclei in heavy ion collisions. The alignment or polarization of the nucleus results in an anisotropic emission of the electron-positron pairs which is closely related to the anisotropic emission of γ\gamma-rays. However, the angular correlation in the case of internal pair conversion exhibits diverse patterns. This might be relevant when investigating atomic processes in heavy-ion collisions performed at the Coulomb barrier.Comment: 27 pages + 6 eps figures, uses revtex.sty and epsf.sty, tar-compressed and uuencoded with uufile

    Screening of microbial communities associated with endive lettuce during postharvest processing on industrial scale

    Get PDF
    In this study, the composition of the microbial community on endive lettuce (Cichorium endivia) was evaluated during different postharvest processing steps. Microbial community structure was characterized by culture-dependent and culture-independent methods. Endive lettuce was sampled exemplarily at four different stages of processing (raw material, cut endive lettuce, washed endive lettuce, and spin-dried (ready to pack) endive lettuce) and analysed by plate count analysis using non-selective and selective agar plates with subsequent identification of bacteria colonies by matrix-assisted laser desorption/ionization time-of light mass spectrometry (MALDI-TOF MS). Additionally, terminal-restriction fragment length polymorphism (TRFLP) analysis and 16S rRNA gene nucleotide sequence analysis were conducted. The results revealed structural differences in the lettuce microbiomes during the different processing steps. The most predominant bacteria on endive lettuce were detected by almost all methods. Bacterial species belonging to the families Pseudomonadaceae, Enterobacteriaceae, Xanthomonadaceae, and Moraxellaceae were detected in most of the examined samples including some unexpected potentially human pathogenic bacteria, especially those with the potential to build resistance to antibiotics (e.g., Stenotrophomonas maltophilia (0.9 % in cut sample, 0.4 % in spin-dried sample), Acinetobacter sp. (0.6 % in raw material, 0.9 % in cut sample, 0.9 % in washed sample, 0.4 % in spin-dried sample), Morganella morganii (0.2 % in cut sample, 3 % in washed sample)) revealing the potential health risk for consumers. However, more seldom occurring bacterial species were detected in varying range by the different methods. In conclusion, the applied methods allow the determination of the microbiome's structure and its dynamic changes during postharvest processing in detail. Such a combined approach enables the implementation of tailored control strategies including hygienic design, innovative decontamination techniques, and appropriate storage conditions for improved product safety

    On the Geometry of Supersymmetric Quantum Mechanical Systems

    Full text link
    We consider some simple examples of supersymmetric quantum mechanical systems and explore their possible geometric interpretation with the help of geometric aspects of real Clifford algebras. This leads to natural extensions of the considered systems to higher dimensions and more complicated potentials.Comment: 18 page

    On a new definition of quantum entropy

    Full text link
    It is proved here that, as a consequence of the unitary quantum evolution, the expectation value of a properly defined quantum entropy operator (as opposed to the non-evolving von Neumann entropy) can only increase during non adiabatic transformations and remains constant during adiabatic ones. Thus Clausius formulation of the second law is established as a theorem in quantum mechanics, in a way that is equivalent to the previously established formulation in terms of minimal work principle [A. E. Allahverdyan and T. M. Nieuwenhuizen, Phys. Rev. E 71, 046107 (2005)]. The corresponding Quantum Mechanical Principle of Entropy Increase is then illustrated with an exactly solvable example, namely the driven harmonic oscillator. Attention is paid to both microcanonical and canonical initial condition. The results are compared to their classical counterparts.Comment: 4 pages, 3 figure

    Asymmetric Squares as Standing Waves in Rayleigh-Benard Convection

    Full text link
    Possibility of asymmetric square convection is investigated numerically using a few mode Lorenz-like model for thermal convection in Boussinesq fluids confined between two stress free and conducting flat boundaries. For relatively large value of Rayleigh number, the stationary rolls become unstable and asymmetric squares appear as standing waves at the onset of secondary instability. Asymmetric squares, two dimensional rolls and again asymmetric squares with their corners shifted by half a wavelength form a stable limit cycle.Comment: 8 pages, 7 figure

    Coupling to haloform molecules in intercalated C60?

    Full text link
    For field-effect-doped fullerenes it was reported that the superconducting transition temperature Tc is markedly larger for C60.2CHX_3 (X=Cl, Br) crystals, than for pure C60. Initially this was explained by the expansion of the volume per C60-molecule and the corresponding increase in the density of states at the Fermi level in the intercalated crystals. On closer examination it has, however, turned out to be unlikely that this is the mechanism behind the increase in Tc. An alternative explanation of the enhanced transition temperatures assumes that the conduction electrons not only couple to the vibrational modes of the C60-molecule, but also to the modes of the intercalated molecules. We investigate the possibility of such a coupling. We find that, assuming the ideal bulk structure of the intercalated crystal, both a coupling due to hybridization of the molecular levels, and a coupling via dipole moments should be very small. This suggests that the presence of the gate-oxide in the field-effect-devices strongly affects the structure of the fullerene crystal at the interface.Comment: 4 pages, 1 figure, to be published in PRB (rapid communication
    corecore