15 research outputs found

    The prediction of lean meat and subcutaneous fat with skin content in pork cuts on the carcass meatness and weight

    No full text
    Early post-mortem, objective and non-destructive prediction of tissue distribution in the major pork cuts is a challenge for the meat industry. Mathematical models to predict pig carcass composition using total lean meat percentage and carcass weight were evaluated in this study. The data were obtained from 455 cold pig carcasses which were dissected according to the EU reference method; total lean meat percentage and carcass weight ranged from 42.45 to 69.21% and from 23.26 to 55.22 kg, respectively. Developed empirical models gave a reasonable fit to the experimental data and successfully predicted the carcass composition and tissue distribution in primal cuts. The second order polynomial models showed high coefficients of determination for prediction of experimental results (between 0.612 and 0.929), while the artificial neural network (ANN) model, based on the Broyden-Fletcher-Goldfarb-Shanno iterative algorithm, showed better prediction capabilities (overall r(2) was 0.889). The newly developed software, based on ANN model is easy, fast, cheap and with sufficient precision for application in the meat industry

    The Rapid ASKAP Continuum Survey I: Design and first results

    Full text link
    © The Author(s), 2020. Published by Cambridge University Press on behalf of the Astronomical Society of Australia. The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia and will cover the full ASKAP band of 700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey and Sydney University Molonglo Sky Survey radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with 15 arcsec resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination made over a 288-MHz band centred at 887.5 MHz
    corecore