2,934 research outputs found
Sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia
PURPOSE: To report a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up. METHODS: Observational case report of one patient. RESULTS: A 31 year-old male with a history of cystic fibrosis presented with a central retinal vein occlusion (CRVO) in his left eye, followed by a CRVO in his right eye 4 years later. His medical workup was significant for elevated levels of homocysteine and gamma-globulins, which coincided with initiation of intravenous immunoglobulin (IVIG) proceeding his second CRVO. CONCLUSIONS: We describe a case of sequential bilateral central retinal vein occlusions in a cystic fibrosis patient with hyperhomocysteinemia and hypergamma-globulinemia over 6 years of follow up and discuss the important role of these risk factors in retinal venous occlusive disease
The Quantization of Geodesic Deviation
There exists a two parameter action, the variation of which produces both the
geodesic equation and the geodesic deviation equation. In this paper it is
shown that this action can be quantized by the canonical method, resulting in
equations which generalize the Klein-Gordon equation. The resulting equations
might have applications, and also show that entirely unexpected systems can be
quantized. The possible applications of quantized geodesic deviation are to:
i)the spreading wave packet in quantum theory, ii)and also to the one particle
to many particle problem in second quantized quantum field theory.Comment: 9 pages, no diagrams, no tables, LaTex2
Noise resistance of adiabatic quantum computation using random matrix theory
Besides the traditional circuit-based model of quantum computation, several
quantum algorithms based on a continuous-time Hamiltonian evolution have
recently been introduced, including for instance continuous-time quantum walk
algorithms as well as adiabatic quantum algorithms. Unfortunately, very little
is known today on the behavior of these Hamiltonian algorithms in the presence
of noise. Here, we perform a fully analytical study of the resistance to noise
of these algorithms using perturbation theory combined with a theoretical noise
model based on random matrices drawn from the Gaussian Orthogonal Ensemble,
whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure
Bragg Scattering as a Probe of Atomic Wavefunctions and Quantum Phase Transitions in Optical Lattices
We have observed Bragg scattering of photons from quantum degenerate
Rb atoms in a three-dimensional optical lattice. Bragg scattered light
directly probes the microscopic crystal structure and atomic wavefunction whose
position and momentum width is Heisenberg-limited. The spatial coherence of the
wavefunction leads to revivals in the Bragg scattered light due to the atomic
Talbot effect. The decay of revivals across the superfluid to Mott insulator
transition indicates the loss of superfluid coherence.Comment: 5 pages, 4 figure
Anomalous diffusion in quantum Brownian motion with colored noise
Anomalous diffusion is discussed in the context of quantum Brownian motion
with colored noise. It is shown that earlier results follow simply and directly
from the fluctuation-dissipation theorem. The limits on the long-time
dependence of anomalous diffusion are shown to be a consequence of the second
law of thermodynamics. The special case of an electron interacting with the
radiation field is discussed in detail. We apply our results to wave-packet
spreading
Electromagnetic Contributions to the Schiff Moment
The Schiff moment, \smij, is a parity and time reversal violating
fermion-fermion coupling. The nucleus-electron Schiff moment generically gives
the most important contribution to the electric dipole moments of atoms and
molecules with zero net intrinsic electronic spin and nuclear spin . Here, the electromagnetic contribution to the Schiff moment, \emij, is
considered. For a nucleon, the leading chirally violating contribution to this
interaction is calculable in the chiral limit in terms of the parity and time
reversal violating pion-nucleon coupling. For the Schiff moment of heavy
nuclei, this chiral contribution is somewhat smaller than the finite size
effect discussed previously in the literature.Comment: 7 pages, 1 figure (not included), Tex file, requires phyzzx, preprint
SCIPP 93/4
Quantum mechanical virial theorem in systems with translational and rotational symmetry
Generalized virial theorem for quantum mechanical nonrelativistic and
relativistic systems with translational and rotational symmetry is derived in
the form of the commutator between the generator of dilations G and the
Hamiltonian H. If the conditions of translational and rotational symmetry
together with the additional conditions of the theorem are satisfied, the
matrix elements of the commutator [G, H] are equal to zero on the subspace of
the Hilbert space. Normalized simultaneous eigenvectors of the particular set
of commuting operators which contains H, J^{2}, J_{z} and additional operators
form an orthonormal basis in this subspace. It is expected that the theorem is
relevant for a large number of quantum mechanical N-particle systems with
translational and rotational symmetry.Comment: 24 pages, accepted for publication in International Journal of
Theoretical Physic
B\"acklund Transformations of MKdV and Painlev\'e Equations
For there are and actions on the space of solutions of
the first nontrivial equation in the Z_2$ actions on the space of solutions of the standard MKdV equation.
These actions survive scaling reduction, and give rise to transformation groups
for certain (systems of) ODEs, including the second, fourth and fifth
Painlev\'e equations.Comment: 8 pages, plain te
Vacuum Polarization and the Electric Charge of the Positron
We show that higher-order vacuum polarization would contribute a measureable
net charge to atoms, if the charges of electrons and positrons do not balance
precisely. We obtain the limit for the sum of
the charges of electron and positron. This also constitutes a new bound on
certain violations of PCT invariance.Comment: 9 pages, 1 figure attached as PostScript file, DUKE-TH-92-38. Revised
versio
Covariant Calculation of General Relativistic Effects in an Orbiting Gyroscope Experiment
We carry out a covariant calculation of the measurable relativistic effects
in an orbiting gyroscope experiment. The experiment, currently known as Gravity
Probe B, compares the spin directions of an array of spinning gyroscopes with
the optical axis of a telescope, all housed in a spacecraft that rolls about
the optical axis. The spacecraft is steered so that the telescope always points
toward a known guide star. We calculate the variation in the spin directions
relative to readout loops rigidly fixed in the spacecraft, and express the
variations in terms of quantities that can be measured, to sufficient accuracy,
using an Earth-centered coordinate system. The measurable effects include the
aberration of starlight, the geodetic precession caused by space curvature, the
frame-dragging effect caused by the rotation of the Earth and the deflection of
light by the Sun.Comment: 7 pages, 1 figure, to be submitted to Phys. Rev.
- …