70 research outputs found

    Thermal disequilibration of ions and electrons by collisionless plasma turbulence

    Full text link
    Does overall thermal equilibrium exist between ions and electrons in a weakly collisional, magnetised, turbulent plasma---and, if not, how is thermal energy partitioned between ions and electrons? This is a fundamental question in plasma physics, the answer to which is also crucial for predicting the properties of far-distant astronomical objects such as accretion discs around black holes. In the context of discs, this question was posed nearly two decades ago and has since generated a sizeable literature. Here we provide the answer for the case in which energy is injected into the plasma via Alfv\'enic turbulence: collisionless turbulent heating typically acts to disequilibrate the ion and electron temperatures. Numerical simulations using a hybrid fluid-gyrokinetic model indicate that the ion-electron heating-rate ratio is an increasing function of the thermal-to-magnetic energy ratio, βi\beta_\mathrm{i}: it ranges from 0.05\sim0.05 at βi=0.1\beta_\mathrm{i}=0.1 to at least 3030 for βi10\beta_\mathrm{i} \gtrsim 10. This energy partition is approximately insensitive to the ion-to-electron temperature ratio Ti/TeT_\mathrm{i}/T_\mathrm{e}. Thus, in the absence of other equilibrating mechanisms, a collisionless plasma system heated via Alfv\'enic turbulence will tend towards a nonequilibrium state in which one of the species is significantly hotter than the other, viz., hotter ions at high βi\beta_\mathrm{i}, hotter electrons at low βi\beta_\mathrm{i}. Spectra of electromagnetic fields and the ion distribution function in 5D phase space exhibit an interesting new magnetically dominated regime at high βi\beta_i and a tendency for the ion heating to be mediated by nonlinear phase mixing ("entropy cascade") when βi1\beta_\mathrm{i}\lesssim1 and by linear phase mixing (Landau damping) when $\beta_\mathrm{i}\gg1

    MHD Turbulence: A Biased Review

    Full text link
    This review puts the developments of the last few years in the context of the canonical time line (Kolmogorov to Iroshnikov-Kraichnan to Goldreich-Sridhar to Boldyrev). It is argued that Beresnyak's objection that Boldyrev's alignment theory violates the RMHD rescaling symmetry can be reconciled with alignment if the latter is understood as an intermittency effect. Boldyrev's scalings, recovered in this interpretation, are thus an example of a physical theory of intermittency in a turbulent system. Emergence of aligned structures brings in reconnection physics, so the theory of MHD turbulence intertwines with the physics of tearing and current-sheet disruption. Recent work on this by Loureiro, Mallet et al. is reviewed and it is argued that we finally have a reasonably complete picture of MHD cascade all the way to the dissipation scale. This picture appears to reconcile Beresnyak's Kolmogorov scaling of the dissipation cutoff with Boldyrev's aligned cascade. These ideas also enable some progress in understanding saturated MHD dynamo, argued to be controlled by reconnection and to contain, at small scales, a tearing-mediated cascade similar to its strong-mean-field counterpart. On the margins of this core narrative, standard weak-MHD-turbulence theory is argued to require adjustment - and a scheme for it is proposed - to take account of the part that a spontaneously emergent 2D condensate plays in mediating the Alfven-wave cascade. This completes the picture of the MHD cascade at large scales. A number of outstanding issues are surveyed, concerning imbalanced MHD turbulence (for which a new theory is proposed), residual energy, subviscous and decaying regimes of MHD turbulence (where reconnection again features prominently). Finally, it is argued that the natural direction of research is now away from MHD and into kinetic territory.Comment: 188 pages, 49 figures; (re)submitted to JPP; this version is substantially modified from v1, especially secs 7.3, 8.2, 11, 12.4, 13.4 and appendices B.3, C.5, C.

    Fluidization of collisionless plasma turbulence

    Full text link
    In a collisionless, magnetized plasma, particles may stream freely along magnetic-field lines, leading to phase "mixing" of their distribution function and consequently to smoothing out of any "compressive" fluctuations (of density, pressure, etc.,). This rapid mixing underlies Landau damping of these fluctuations in a quiescent plasma-one of the most fundamental physical phenomena that make plasma different from a conventional fluid. Nevertheless, broad power-law spectra of compressive fluctuations are observed in turbulent astrophysical plasmas (most vividly, in the solar wind) under conditions conducive to strong Landau damping. Elsewhere in nature, such spectra are normally associated with fluid turbulence, where energy cannot be dissipated in the inertial scale range and is therefore cascaded from large scales to small. By direct numerical simulations and theoretical arguments, it is shown here that turbulence of compressive fluctuations in collisionless plasmas strongly resembles one in a collisional fluid and does have broad power-law spectra. This "fluidization" of collisionless plasmas occurs because phase mixing is strongly suppressed on average by "stochastic echoes", arising due to nonlinear advection of the particle distribution by turbulent motions. Besides resolving the long-standing puzzle of observed compressive fluctuations in the solar wind, our results suggest a conceptual shift for understanding kinetic plasma turbulence generally: rather than being a system where Landau damping plays the role of dissipation, a collisionless plasma is effectively dissipationless except at very small scales. The universality of "fluid" turbulence physics is thus reaffirmed even for a kinetic, collisionless system

    Firehose and Mirror Instabilities in a Collisionless Shearing Plasma

    Full text link
    Hybrid-kinetic numerical simulations of firehose and mirror instabilities in a collisionless plasma are performed in which pressure anisotropy is driven as the magnetic field is changed by a persistent linear shear SS. For a decreasing field, it is found that mostly oblique firehose fluctuations grow at ion Larmor scales and saturate with energies \simS1/2S^{1/2}; the pressure anisotropy is pinned at the stability threshold by particle scattering off microscale fluctuations. In contrast, nonlinear mirror fluctuations are large compared to the ion Larmor scale and grow secularly in time; marginality is maintained by an increasing population of resonant particles trapped in magnetic mirrors. After one shear time, saturated order-unity magnetic mirrors are formed and particles scatter off their sharp edges. Both instabilities drive sub-ion-Larmor--scale fluctuations, which appear to be kinetic-Alfv\'{e}n-wave turbulence. Our results impact theories of momentum and heat transport in astrophysical and space plasmas, in which the stretching of a magnetic field by shear is a generic process.Comment: 5 pages, 8 figures, accepted for publication in Physical Review Letter

    Magneto-immutable turbulence in weakly collisional plasmas

    Get PDF
    We propose that pressure anisotropy causes weakly collisional turbulent plasmas to self-organize so as to resist changes in magnetic-field strength. We term this effect "magneto-immutability" by analogy with incompressibility (resistance to changes in pressure). The effect is important when the pressure anisotropy becomes comparable to the magnetic pressure, suggesting that in collisionless, weakly magnetized (high-β\beta) plasmas its dynamical relevance is similar to that of incompressibility. Simulations of magnetized turbulence using the weakly collisional Braginskii model show that magneto-immutable turbulence is surprisingly similar, in most statistical measures, to critically balanced MHD turbulence. However, in order to minimize magnetic-field variation, the flow direction becomes more constrained than in MHD, and the turbulence is more strongly dominated by magnetic energy (a nonzero "residual energy"). These effects represent key differences between pressure-anisotropic and fluid turbulence, and should be observable in the β1\beta\gtrsim1 turbulent solar wind.Comment: Accepted for publication in J. Plasma Phy

    Weak Alfvén-wave turbulence revisited

    Get PDF
    Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral continuity between the two is assumed, and, indeed, none is found. If the 2D modes are not directly forced, k−2 and k−1 spectra are found for the Alfvén waves and the 2D modes, respectively, with the latter less energetic than the former. The wave number at which their energies become comparable marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar, and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagating Alfvén waves. If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but at small enough scales, the same weak and then strong regimes as described above are achieved

    Astrophysical gyrokinetics: Turbulence in pressure-anisotropic plasmas at ion scales and beyond

    Full text link
    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it, and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (2015). At scales at and below the ion Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalisation of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvenic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfven waves transition into kinetic Alfven waves. Secondly, we derive and discuss a general free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfven waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy can cause large variations in the ion-to-electron heating ratio due to the dissipation of Alfvenic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects the turbulent fluctuation spectra, the differential heating of particle species, and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.Comment: 59 pages, 6 figures, accepted for publication in Journal of Plasma Physics (original 28 Nov 2017); abstract abridge

    Spectra and Growth Rates of Fluctuating Magnetic Fields in the Kinematic Dynamo Theory with Large Magnetic Prandtl Numbers

    Full text link
    The existence of a weak galactic magnetic field has been repeatedly confirmed by observational data. The origin of this field has not as yet been explained in a fully satisfactory way and represents one of the main challenges of the astrophysical dynamo theory. In both the galactic dynamo theory and the primordial-origin theory, a major influence is exerted by the small-scale magnetic fluctuations. This article is devoted to constructing a systematic second-order statistical theory of such small-scale fields. The statistics of these fields are studied in the kinematic approximation and for the case of large Prandtl numbers, which is relevant for the galactic and protogalactic plasma. The advecting velocity field is assumed to be Gaussian and short-time correlated. Theoretical understanding of this kinematic dynamo model is a necessary prerequisite for any prospective nonlinear dynamo theory. The theory is developed for an arbitrary degree of compressibility and formally in d dimensions, which generalizes the previously known results, elicits the structure of the solutions, and uncovers a number of new effects. The magnetic energy spectra are studied as they grow and spread over scales during the initial stage of the field amplification. Exact Green's-function solutions are obtained. The spectral theory is supplemented by the study of magnetic-field correlation functions in the configuration space, where the dynamo problem can be mapped onto a particular one-dimensional quantum-mechanical problem. The latter approach is most suitable for the description of the kinematic dynamo in the long-time limit, i.e. when the magnetic excitation has spread over all scales present in the system. A simple way of calculating the growth rates of the magnetic fields in this long-time limit is proposed.Comment: aastex, 52 pages, 10 figures; final version of the paper as published in Ap
    corecore