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Weak Alfvén-Wave Turbulence Revisited
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Weak Alfvénic turbulence in a periodic domain is considered as a mixed state of Alfvén waves
interacting with the two-dimensional (2D) condensate. Unlike in standard treatments, no spectral
continuity between the two is assumed and indeed none is found. If the 2D modes are not directly
forced, k−2 and k−1 spectra are found for the Alfvén waves and the 2D modes, respectively, with the
latter less energetic than the former. The wave number at which their energies become comparable
marks the transition to strong turbulence. For imbalanced energy injection, the spectra are similar
and the Elsasser ratio scales as the ratio of the energy fluxes in the counterpropagting Alfvén waves.
If the 2D modes are forced, a 2D inverse cascade dominates the dynamics at the largest scales, but
at small enough scales, the same weak and then strong regimes as described above are achieved.

PACS numbers: 52.35.Ra, 94.05.Lk, 96.50.Tf

Introduction. It has been understood for many years
that small-scale turbulence of a conducting fluid or
plasma in a strong magnetic field consists of Alfvén-wave
packets [1]. This is true in most astrophysical plasmas,
including the weakly collisional ones, where Alfvénic fluc-
tuations populate the scales above the ion Larmor scale
[2]. On theoretical [3–5], numerical [6–9] and observa-
tional [10–15] grounds, it appears clear that Alfvénic tur-
bulence is anisotropic with k⊥ ≫ k‖. The parallel scales
are associated with the propagation of Alfvén waves, the
perpendicular ones with the nonlinear interaction be-
tween them. The relative importance of these effects de-
pends on the corresponding time scales, τA ∼ (k‖vA)

−1

and τnl ∼ (k⊥u⊥)
−1, where vA is the Alfvén speed and u⊥

the perpendicular velocity perturbation. When τA ≫ τnl,
the nonlinearity dominates and the turbulence is effec-
tively two-dimensional (2D); when τA ≪ τnl, the wave
propagation dominates and the turbulence is weak.

A causality argument suggests that a pure 2D regime
cannot be sustained: for any given k⊥, motions in two
planes perpendicular to the mean field and separated by
a distance ∼ k−1

‖ can only remain correlated if the time

it takes an Alfvén wave to propagate between the planes
is τA < τnl. Thus, an initially 2D perturbation will nat-
urally decay into a state of “critical balance,” τA ∼ τnl.
It has been argued [5, 16, 17] that weak turbulence, the
limit case opposite to 2D, will also approach critical bal-
ance via a perpendicular cascade in which τnl becomes
ever smaller until τnl ∼ τA at some sufficiently small
scale. The critical balance thus appears to be the fun-
damental physical principle underpinning Alfvénic tur-
bulence (and possibly in general turbulence in systems
that support propagation of waves [18]). However, the
structure of critically balanced turbulence remains con-
tentious and poorly understood. Efforts to improve this
understanding have often turned to various insights from
the theory of weak turbulence for intuition and guid-

ance. Weak Alfvén-wave turbulence itself, while having
for some time enjoyed the reputation of a solved problem
[16], has nevertheless recently been subject of several new
investigations that amended or disagreed with the estab-
lished paradigm [19–22]. This paper is a contribution
to this revisionist tendency, focusing on the structure of
weak Alfvén-wave turbulence in finite periodic domains
and on the transition to critical balance. While a peri-
odic box may be an artificial setting, it is ubiquitous in
numerical experiments. It is, therefore, important to un-
derstand turbulence in such domains and the extent to
which it might belong to the same universality class as
turbulence in natural systems.

While it might appear that weak turbulence is an ana-
lytically tractable and, therefore, easily understood limit,
the weak turbulence of Alfvén waves is, in fact, diffi-
cult to treat in a rigorous fashion because of a special
role played by the modes with k‖ = 0. Since Alfvén

waves have frequencies ω±
k

= ±k‖vA and only counter-
propagating waves can interact, the resonance conditions
ω+
k1

+ω−
k2

= ω±
k3

and k1+k2 = k3 imply that at least one
mode in any interacting triad must have k‖ = 0 [23, 24].
These modes are not Alfvén waves but rather 2D mo-
tions for which τA = ∞, so they cannot be treated by
the weak-turbulence approximation. The standard rem-
edy for this complication has been to proceed with the
weak-turbulence expansion anyway, assuming formally
that the k‖ spectrum of the Alfvén waves is continuous
across k‖ = 0 [16, 17]. The resulting theory predicts a

k−2
⊥ scaling of the energy spectrum. As this scaling is cor-

roborated by direct numerical simulations [25], the con-
tinuity assumption might seem to be vindicated. In this
paper, we propose a different way of treating the k‖ = 0
modes, with no assumption of their spectral continuity
with the Alfvén waves. It leads to a new phenomenolog-
ical theory of the weak Alfvén-wave turbulence and to
distinct scaling predictions for the energy spectra of the
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Alfvén waves and of the k‖ = 0 modes. We discuss vari-
ous regimes: balanced and imbalanced, containing forced
2D motions or otherwise, and also describe the transition
to critically balanced strong turbulence in a new way.
Scaling theory. Let us start with the equations of re-

duced magnetohydrodynamics (RMHD) [26, 27], which
can be shown to describe correctly the anisotropic
Alfvénic fluctuations both in an MHD fluid [28], and,
above the ion Larmor scale, even in weakly collisional ki-
netic plasmas [2]. In RMHD, the velocity and magnetic
field perturbations perpendicular to the mean field B0 =
vAẑ (the Alfvénic perturbations) are two-dimensionally
solenoidal, so they can be expressed in terms of stream
and flux functions: u⊥ = ẑ×∇⊥Φ and δB⊥ = ẑ×∇⊥Ψ.
The RMHD equations can then be written in terms of the
Elsasser potentials ζ± = Φ±Ψ as follows [2]

∂tζ
± ∓ vA∂zζ

± = N [ζ∓, ζ±] + F±, (1)

where F± is the stream function of a body force repre-
senting energy injection and the nonlinear term is

N [ζ∓, ζ±] = −
1

2
∇−2

⊥

({

ζ+,∇2
⊥ζ

−
}

+
{

ζ−,∇2
⊥ζ

+
}

∓∇2
⊥

{

ζ+, ζ−
})

, (2)

where {A,B} ≡ ẑ · (∇⊥A×∇⊥B).
Let us now Fourier transform in z, factor out the

oscillating in time part of the solution, ζ±(x, y, z) =
∑

k‖
ζ±k‖

(x, y)e±ik‖vAt+ik‖z, and write separately the evo-

lution equations for the Alfvén waves (k‖ 6= 0),

∂tζ
±
k‖

= N [ζ∓0 , ζ±k‖
] +N [ζ∓k‖

, ζ±0 ]e∓i2k‖vAt

+
∑

k′
‖
6=0, k‖

N [ζ∓k′
‖
, ζ±k‖−k′

‖
]e∓i2k′

‖vAt + F±
k‖
e∓ik‖vAt, (3)

and the k‖ = 0 modes,

∂tζ
±
0 = N [ζ∓0 , ζ±0 ] +

∑

k‖ 6=0

N [ζ∓k‖
, ζ±−k‖

]e∓i2k‖vAt. (4)

The standard approximation of the weak-turbulence
theory is, roughly speaking, to neglect the nonlinear
terms in Eq. (3) that have oscillatory factors, so the dom-
inant effect is the Alfvén-wave “scattering” off the k‖ = 0
modes (the first term on the right-hand side). This gives
rise to a cascade of energy to small perpendicular scales
(large k⊥), while the transfer of energy from the directly
forced k‖ to other k‖ is small. For simplicity, let us as-
sume that only one k‖ = k‖f is forced. If we denote
ζ±n (k⊥) the characteristic amplitudes corresponding to
k‖ = nk‖f and the perpendicular wave number k⊥ and
take the interactions to be local in k⊥, we may estimate

(∇2
⊥ζ

±
1 )N [ζ∓0 , ζ1] ∼ k4⊥ζ

∓
0 (k⊥)[ζ

±
1 (k⊥)]

2 ∼ ε±, (5)

where ε± = 〈(∇⊥ζ
±) · (∇⊥F

±)〉 is the mean power in-
jected by the forcing into the “+” and “−” modes. We
first consider the balanced case: ε+ = ε− = ε [43].

Eq. (5) shows that in order to make scaling predictions
for the Alfvén waves, we must know the scaling of the
amplitudes of the k‖ = 0 modes — these modes deter-

mine the cascade rate ∼ k2⊥ζ
∓
0 (k⊥) for the Alfvén waves.

The k‖ = 0 modes are very different from the Alfvén
waves: they are described by 2D magnetohydrodynam-
ics with an oscillatory nonlinear source term representing
the coupling of k‖ and −k‖ Alfvén waves [Eq. (4)]. We
shall first consider the situation in which the k‖ = 0
modes are not forced externally, so this nonlinear source
is the only source of energy in the k‖ = 0 modes. Since
the nonlinear source in Eq. (4) has an oscillatory factor,
there is a strong cancellation effect and the amplitude of
the k‖ = 0 modes can be estimated as [44]

ζ±0 (k⊥) ∼ ω−1
A k2⊥ζ

+
1 (k⊥)ζ

−
1 (k⊥), (6)

where ωA = k‖fvA. Combining Eqs. (5) and (6), we find

ζ±1 (k⊥) ∼ (εωA)
1/4k

−3/2
⊥ ⇒ E±

1 (k⊥) ∼ (εωA)
1/2k−2

⊥ ,

(7)

ζ±0 (k⊥) ∼

(

ε

ωA

)1/2

k−1
⊥ ⇒ E±

0 (k⊥) ∼
ε

ωA
k−1
⊥ , (8)

where E±
n (k⊥) is the one-dimensional energy spectrum,

related to the characteristic amplitudes via k⊥E
±
n (k⊥) ∼

k2⊥[ζ
±
n (k⊥)]

2. The energy injection is balanced, so the
the “+” and “−” spectra have the same scaling.
The phenomenological argument presented above has

led to a prediction of the Alfvén-wave spectrum [Eq. (7)]
that is formally the same as the prediction of the stan-
dard weak-turbulence theory (this is only true for the
balanced case; see below). However, the physical origin
of this spectrum is different and the assumption of con-
tinuity across k‖ = 0 is certainly not satisfied:

E±
0 (k⊥)

E±
1 (k⊥)

∼
τA
τnl,0

∼

(

τA
τnl,1

)2

∼
k⊥
kc

≪ 1, (9)

where τA = ω−1
A , τnl,0 ∼ [k2⊥ζ

±
0 (k⊥)]

−1, τnl,1 ∼
[k2⊥ζ

±
1 (k⊥)]

−1, and kc = (ω3
A/ε)

1/2. The amplitudes of
the k‖ = 0 modes are smaller than those of the Alfvén
waves as long as τA ≪ τnl, i.e., as long as the weak-
turbulence limit holds. However, their spectrum is shal-
lower than that of the Alfvén waves, so the ratio between
the amplitudes increases with k⊥ until they become com-
parable at k⊥ ∼ kc. At this point the turbulence becomes
critically balanced and is no longer weak, developing a

k
−5/3
⊥ [4, 29] or perhaps k

−3/2
⊥ [30] spectrum.

Higher-k‖ modes. In the same way that a small leak-
age of energy from the forced modes (k‖ = k‖f) via os-
cillatory nonlinear couplings gives rise to a spectrum of
k‖ = 0 modes, similar leakages arise from k‖ = k‖f to
k‖ = 2k‖f and from there onwards to k‖ = 3k‖f , 4k‖f ,
. . . , nk‖f (the third term on the right-hand of Eq. (3)).
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FIG. 1: A schematic illustration of the weak-turbulence spec-
tra and transition to strong, critically balanced turbulence.

These modes do not contribute to the scattering of the
driven modes and are just induced by the latter. Analo-
gously to Eq. (6), it is not hard to see that for n ≥ 2,

ζ±n (k⊥) ∼
k
2(n−1)
⊥ [ζ±1 (k⊥)]

n

ωn−1
A

, (10)

whence follow the spectra of these modes [using Eq. (7)]

En(k⊥) ∼
k
3(n−1)
⊥

ω
2(n−1)
A

En
1 (k⊥) ∼

εn/2

ω
(3n−4)/2
A

kn−3
⊥ . (11)

Similarly to Eq. (9), we have En(k⊥)/E1(k⊥) ∼

(k⊥/kc)
n−1, so the amplitudes of the k‖ = nk‖f modes

with n ≥ 2 become comparable to the amplitude of the
forced mode (n = 1) at the same wave number as does
the amplitude of the k‖ = 0 mode. This situation is
illustrated schematically in Fig. 1.
Imbalanced turbulence. If the energy injection into

the “+” and “−” Elsasser modes is not the same, say,
ε+ > ε−, the resulting turbulence is known as imbalanced

— this is, in fact, a generic situation in the solar wind
[31, 32] and also in numerical simulations if one considers
local subdomains of the simulation box [33].
Our arguments are easily adapted to this case. Eqs.

(5) and (6) hold unchanged (note that the latter formula
implies ζ+0 ∼ ζ−0 ). Eqs. (7) and (8) generalize to

ζ±1 (k⊥) ∼
(ε±)3/8

(ε∓)1/8
ω
1/4
A

k
3/2
⊥

⇒ E±
1 (k⊥) ∼ ω

1/2
A

(ε±)3/4

(ε∓)1/4
k−2
⊥ ,

(12)

ζ±0 (k⊥) ∼
(ε+ε−)1/4

ω
1/2
A k⊥

⇒ E±
0 (k⊥) ∼

(ε+ε−)1/2

ωA
k−1
⊥ ,

(13)

These imply that the cross-helicity and the Elsasser ratio
in weak imbalanced turbulence are idependent of k⊥:

E+
0 (k⊥) ∼ E−

0 (k⊥),
E+

1 (k⊥)

E−
1 (k⊥)

∼
ε+

ε−
, (14)

Note that the standard weak-turbulence treatment [5]
of the imbalanced case was insufficient to fix the individ-
ual scalings of the “+” and “−” spectra [17]. Our argu-
ment does not have this problem and is able predict the
relationship between amplitudes and fluxes [Eq. (14)], for
which the standard weak-turbulence theory had to make
recourse to solving the kinetic equation, formally invalid
for the k‖ = 0 modes [16].

The k‖ = 0 modes are still small compared to the
Alfvénic modes:

E±
0 (k⊥)

E±
1 (k⊥)

∼

(

τA

τ±nl,1

)2

∼
k⊥

k±c
≪ 1, (15)

where the nonlinear times τ±nl,1 ∼ [k2⊥ζ
∓
1 (k⊥)]

−1 are now
different for the “+” and “−” modes and so are the wave
numbers k±c = ω

3/2
A (ε±)1/4(ε∓)−3/4 at which the weak-

turbulence approximation breaks down. It must of course
break down already at the smaller of the two, viz., k−c
(we have assumed ε+ > ε−). This opens the possibility
of a “twighlight range” of k⊥ between k−c and k+c (or an-
other threshold dependent on the intermediate scalings)
— an extended transition from weak to strong regime,
where the “−” modes are strongly nonlinear, while the
“+” modes are not. It is indeed possible to construct
such mixed theories, featuring steeper spectra for the
“+” modes and shallower ones for the “−” modes (cf.
[34]). We are tempted to speculate that this might help
explain the origin of apparently non-universal (and differ-
ent) slopes of the “+” and “−” spectra found in simula-
tions of strongly imbalanced Alfvénic turbulence [35, 36].
However, the more or less arbitrary assumptions neces-
sary to fix scalings in this regime and the consequent
uncertainties in the outcome are so numerous that we
prefer not to treat this subject here. The precise scal-
ings of strong turbulence in the imbalanced regime also
remain theoretically uncertain [33–35, 37, 38].

Case of hydrodynamically forced k‖ = 0 modes. We
have so far considered a special case in which the k‖ = 0
modes were not forced. Let us now allow comparable
power to be injected into k‖ = 0 as into k‖ = k‖f . The
situation is now radically different because the amplitude
of the k‖ = 0 modes is no longer determined by a small
leakage of the Alfvén-wave energy via the oscillatory term
in Eq. (4), but by a direct forcing. If we ignore the oscilla-
tory term altogether (assuming it averages out to lowest
order in τA/τnl), the k‖ = 0 modes decouple and form
an independent 2D turbulent condensate. We write the
equations for this condensate in terms of its velocities,
given by the stream function Φ0 = (ζ+0 +ζ−0 )/2, and mag-
netic fields, given by the flux function Ψ0 = (ζ+0 − ζ−0 )/2:

∂t∇
2
⊥Φ0 +

{

Φ0,∇
2
⊥Φ0

}

=
{

Ψ0,∇
2
⊥Ψ0

}

+∇2
⊥F0, (16)

∂tΨ0 + {Φ0,Ψ0} = Re
∑

k‖ 6=0

{

ζ+k‖
, ζ−−k‖

}

e−i2k‖vAt, (17)
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FIG. 2: A schematic illustration of the weak-turbulence spec-
tra for the case of velocity-forced k‖ = 0 modes.

where we have returned to the assumption that all forcing
is in the velocity field. Therefore, the magnetic flux func-
tion Ψ0 is a passive scalar and its only source of energy
is the oscillatory coupling to the Alfvén waves, which has
consequently been retained in Eq. (17). Since this energy
source is small, Ψ0 ≪ Φ0 and the Lorentz force can be
neglected in Eq. (16), leaving a 2D Euler equation. For
the forced Alfvén waves with k‖ = k‖f , we have from from
Eq. (3), neglecting the oscillatory terms and Ψ0,

∂tζ
±
1 = N [Φ0, ζ

±
1 ] + F1e

∓ik‖vAt. (18)

The unforced Alfvén waves with k‖ 6= k‖f will have small
amplitudes due to the oscillatory terms in Eq. (3).
Thus, the turbulence has split into the following dis-

tinct components: a 2D (k‖ = 0) forced hydrodynamical

condensate, an ensemble of forced Alfvén waves passively
advected by this 2D condensate [Eq. (18)], small 2D mag-
netic fluctuations feeding off the Alfvén waves and also
passively advected by the 2D hydrodynamic condensate
[Eq. (17)], and small unforced Alfvén waves again pas-
sively advected by the 2D condensate and feeding off
the forced modes and each other (in a way similar to
that described above for the case of no forcing of the
k‖ = 0 modes). This situation is somewhat similar to
the “slaved” regime proposed in [19], where everything is
unilaterally controlled by the 2D condensate.
Since the condensate is hydrodynamical and 2D, one

expects an inverse energy cascade to perpendicular scales
larger than the forcing scale (in a finite system leading
to energy accumulation at the system scale) [45]. Below
the forcing scale, the direct enstrophy cascade produces
a well-known kinetic-energy spectrum:

E0(k⊥) ∼ k⊥[Φ0(k⊥)]
2 ∼ γ2

0k
−3
⊥ , (19)

where γ0 = (k2⊥fε0)
1/3 is the rate of strain (the same

for all modes), ε0 = 〈(∇⊥Φ0) · (∇⊥F0)〉 the mean power
injected into the k‖ = 0 modes and k⊥f the perpendicular

wave number of the forcing [46]. The spectra of the forced
Alfvén waves and the k‖ = 0 magnetic fluctuations follow

from Eq. (5) with ζ±0 = Φ0 and Eq. (6) with ζ±0 = Ψ0,
respectively:

E±
1 (k⊥) ∼ k⊥[ζ

±
1 (k⊥)]

2 ∼
ε1
γ0

k−1
⊥ , (20)

M0(k⊥) ∼ k⊥[Ψ0(k⊥)]
2 ∼

(

ε1
ωAγ0

)2

k⊥, (21)

where ε1 is the mean power injected into the k‖ = k‖f
Alfvén waves (assumed balanced). This situation is illus-
trated in Fig. 2. The intersection wave number between
E0 and E1 is k0 = (γ3

0/ε1)
1/2 ∼ k⊥f if ε0 ∼ ε1. The inter-

section between E0 and M0 is at km = (γ2
0ωA/ε1)

1/2. For
k⊥ > km, the rate of strain γ0 of the hydrodynamic con-
densate is smaller than the rate of strain associated with
the k‖ = 0 modes induced by the oscillatory coupling
to the Alfvén waves (γ0τnl,0 < 1) and so the turbulence
reverts to the regime described earlier for the case of no
forcing of the k‖ = 0 modes.

Other regimes. Possibilities proliferate if we allow im-
balanced energy injection and/or let the k‖ = 0 modes
be forced magnetically as well as hydrodynamically. The
majority of the resulting regimes are probably not physi-
cally realizable, so we will not pursue this line of inquiry
further, except for the following observation. If Ψ0 is
forced, this direct injection of energy into 2D magnetic
fluctuations will in general trump the oscillatory coupling
to Alfvén waves (the right-hand side of Eq. (17)). Thus,
the 2D condensate decouples fully from the latter. Mag-
netic field of the k‖ = 0 modes is now dynamically signifi-
cant, so there will be a 2D inverse cascade of the variance
of the magnetic flux function, |Ψ0|

2, and a direct cascade
of the two Elsasser energies |∇⊥ζ

±
0 |2. The inverse cas-

cade of |Ψ0|
2 to k⊥ < k⊥f produces a k

−1/3
⊥ spectrum

of magnetic energy and possibly a shallower spectrum
of the kinetic energy [39]. This may well be the phys-
ical mechanism responsible for the relative preponder-
ance of magnetic energy over kinetic at large scales in
weak MHD turbulence [21]. The direct cascade is nu-

merically known to give rise to k
−3/2
⊥ spectra [40–42][47].

The Alfvén waves (k‖ = k‖f) will be passively mixed by
this strong 2D MHD turbulence. However, by the causal-
ity argument given in the Introduction, the latter is, in
fact, likely to be unstable, develop parallel decorrelations
and become strong, 3D and critically balanced.

This work was supported by STFC (AAS and TAY)
and the Leverhulme Trust Network for Magnetised
Plasma Turbulence. Much of it was completed during
the Programme “Frontiers in Dynamo Theory” at Insti-
tut H. Poincaré, Paris (March-April 2009), whose hospi-
tality AAS and SVN gratefully acknowledge.
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