1,046 research outputs found

    A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules

    Get PDF
    Studies of the relationship between DNA variation and gene expression variation, often referred to as “expression quantitative trait loci (eQTL) mapping”, have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each other to affect mRNA expression levels for a set of co-regulated genes. We present a Bayesian method to facilitate the task, in which co-expressed genes mapped to a common set of markers are treated as a module characterized by latent indicator variables. A Markov chain Monte Carlo algorithm is designed to search simultaneously for the module genes and their linked markers. We show by simulations that this method is more powerful for detecting true eQTLs and their target genes than traditional QTL mapping methods. We applied the procedure to a data set consisting of gene expression and genotypes for 112 segregants of S. cerevisiae. Our method identified modules containing genes mapped to previously reported eQTL hot spots, and dissected these large eQTL hot spots into several modules corresponding to possibly different biological functions or primary and secondary responses to regulatory perturbations. In addition, we identified nine modules associated with pairs of eQTLs, of which two have been previously reported. We demonstrated that one of the novel modules containing many daughter-cell expressed genes is regulated by AMN1 and BPH1. In conclusion, the Bayesian partition method which simultaneously considers all traits and all markers is more powerful for detecting both pleiotropic and epistatic effects based on both simulated and empirical data

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al

    Nematic liquid crystal alignment on chemical patterns

    Get PDF
    Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 ¹m homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p

    Expression quantitative trait loci are highly sensitive to cellular differentiation state

    Get PDF
    Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce

    DNA nucleotide-specific modulation of \mu A transverse edge currents through a metallic graphene nanoribbon with a nanopore

    Full text link
    We propose two-terminal devices for DNA sequencing which consist of a metallic graphene nanoribbon with zigzag edges (ZGNR) and a nanopore in its interior through which the DNA molecule is translocated. Using the nonequilibrium Green functions combined with density functional theory, we demonstrate that each of the four DNA nucleotides inserted into the nanopore, whose edge carbon atoms are passivated by either hydrogen or nitrogen, will lead to a unique change in the device conductance. Unlike other recent biosensors based on transverse electronic transport through DNA nucleotides, which utilize small (of the order of pA) tunneling current across a nanogap or a nanopore yielding a poor signal-to-noise ratio, our device concept relies on the fact that in ZGNRs local current density is peaked around the edges so that drilling a nanopore away from the edges will not diminish the conductance. Inserting a DNA nucleotide into the nanopore affects the charge density in the surrounding area, thereby modulating edge conduction currents whose magnitude is of the order of \mu A at bias voltage ~ 0.1 V. The proposed biosensor is not limited to ZGNRs and it could be realized with other nanowires supporting transverse edge currents, such as chiral GNRs or wires made of two-dimensional topological insulators.Comment: 6 pages, 6 figures, PDFLaTe

    Detection of regulator genes and eQTLs in gene networks

    Full text link
    Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are "expression quantitative trait loci" or eQTLs for short) and presumably play a gene regulatory role, affecting the status of molecular networks of interacting genes, proteins and metabolites. Computational systems biology approaches to reconstruct causal gene networks from large-scale omics data have therefore become essential to understand the structure of networks controlled by eQTLs together with other regulatory genes, and to generate detailed hypotheses about the molecular mechanisms that lead from genotype to phenotype. Here we review the main analytical methods and softwares to identify eQTLs and their associated genes, to reconstruct co-expression networks and modules, to reconstruct causal Bayesian gene and module networks, and to validate predicted networks in silico.Comment: minor revision with typos corrected; review article; 24 pages, 2 figure

    an island endemic forest specialist and a widespread habitat generalist

    Get PDF
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis

    Moving toward a system genetics view of disease

    Get PDF
    Testing hundreds of thousands of DNA markers in human, mouse, and other species for association to complex traits like disease is now a reality. However, information on how variations in DNA impact complex physiologic processes flows through transcriptional and other molecular networks. In other words, DNA variations impact complex diseases through the perturbations they cause to transcriptional and other biological networks, and these molecular phenotypes are intermediate to clinically defined disease. Because it is also now possible to monitor transcript levels in a comprehensive fashion, integrating DNA variation, transcription, and phenotypic data has the potential to enhance identification of the associations between DNA variation and diseases like obesity and diabetes, as well as characterize those parts of the molecular networks that drive these diseases. Toward that end, we review methods for integrating expression quantitative trait loci (eQTLs), gene expression, and clinical data to infer causal relationships among gene expression traits and between expression and clinical traits. We further describe methods to integrate these data in a more comprehensive manner by constructing coexpression gene networks that leverage pairwise gene interaction data to represent more general relationships. To infer gene networks that capture causal information, we describe a Bayesian algorithm that further integrates eQTLs, expression, and clinical phenotype data to reconstruct whole-gene networks capable of representing causal relationships among genes and traits in the network. These emerging network approaches, aimed at processing high-dimensional biological data by integrating data from multiple sources, represent some of the first steps in statistical genetics to identify multiple genetic perturbations that alter the states of molecular networks and that in turn push systems into disease states. Evolving statistical procedures that operate on networks will be critical to extracting information related to complex phenotypes like disease, as research goes beyond a single-gene focus. The early successes achieved with the methods described herein suggest that these more integrative genomics approaches to dissecting disease traits will significantly enhance the identification of key drivers of disease beyond what could be achieved by genetic association studies alone

    Calibrating the Performance of SNP Arrays for Whole-Genome Association Studies

    Get PDF
    To facilitate whole-genome association studies (WGAS), several high-density SNP genotyping arrays have been developed. Genetic coverage and statistical power are the primary benchmark metrics in evaluating the performance of SNP arrays. Ideally, such evaluations would be done on a SNP set and a cohort of individuals that are both independently sampled from the original SNPs and individuals used in developing the arrays. Without utilization of an independent test set, previous estimates of genetic coverage and statistical power may be subject to an overfitting bias. Additionally, the SNP arrays' statistical power in WGAS has not been systematically assessed on real traits. One robust setting for doing so is to evaluate statistical power on thousands of traits measured from a single set of individuals. In this study, 359 newly sampled Americans of European descent were genotyped using both Affymetrix 500K (Affx500K) and Illumina 650Y (Ilmn650K) SNP arrays. From these data, we were able to obtain estimates of genetic coverage, which are robust to overfitting, by constructing an independent test set from among these genotypes and individuals. Furthermore, we collected liver tissue RNA from the participants and profiled these samples on a comprehensive gene expression microarray. The RNA levels were used as a large-scale set of quantitative traits to calibrate the relative statistical power of the commercial arrays. Our genetic coverage estimates are lower than previous reports, providing evidence that previous estimates may be inflated due to overfitting. The Ilmn650K platform showed reasonable power (50% or greater) to detect SNPs associated with quantitative traits when the signal-to-noise ratio (SNR) is greater than or equal to 0.5 and the causal SNP's minor allele frequency (MAF) is greater than or equal to 20% (N = 359). In testing each of the more than 40,000 gene expression traits for association to each of the SNPs on the Ilmn650K and Affx500K arrays, we found that the Ilmn650K yielded 15% times more discoveries than the Affx500K at the same false discovery rate (FDR) level
    corecore