9 research outputs found

    Solvent-Free Melting Techniques for the Preparation of Lipid-Based Solid Oral Formulations

    Get PDF

    A Kinetic Study of the Polymorphic Transformation of Nimodipine and Indomethacin during High Shear Granulation

    No full text
    The objective of the present study was to investigate the mechanism, kinetics, and factors affecting the polymorphic transformation of nimodipine (NMD) and indomethacin (IMC) during high shear granulation. Granules containing active pharmaceutical ingredient, microcrystalline cellulose, and low-substituted hydroxypropylcellulose were prepared with ethanolic hydroxypropylcellulose solution, and the effects of independent process variables including impeller speed and granulating temperature were taken into consideration. Two polymorphs of the model drugs and granules were characterized by X-ray powder diffraction analysis and quantitatively determined by differential scanning calorimetry. A theoretical kinetic method of ten kinetic models was applied to analyze the polymorphic transformation of model drugs. The results obtained revealed that both the transformation of modification I to modification II of NMD and the transformation of the α form to the γ form of IMC followed a two-dimensional nuclei growth mechanism. The activation energy of transformation was calculated to be 7.933 and 56.09 kJ·mol−1 from Arrhenius plot, respectively. Both the granulating temperature and the impeller speed affected the transformation rate of the drugs and, in particular, the high shear stress significantly accelerated the transformation process. By analyzing the growth mechanisms of granules in high-shear mixer, it was concluded that the polymorphic transformation of NMD and IMC took place in accordance with granule growth in a high-shear mixer

    Direct pelletization in a rotary processor controlled by torque measurements. II: Effects of changes in the content of microcrystalline cellulose

    No full text
    In the present study we investigated the effect of changes in the content of microcrystalline cellulose (MCC) on a direct pelletization process in a rotary processor in which the liquid addition was terminated once a certain increase in torque was produced. Nine different mixtures of MCC and lactose with MCC contents varying from 10% to 100% (w/w) were pelletized using 6 different torque increase levels, and the changes in pellet characteristics were investigated. The pellet characteristics investigated were pellet shape, size, and size distribution as well as the water content of the pellets at the end of liquid addition. To produce spherical agglomerates with suitable characteristics in a reproducible way, a content of a least 20% (w/w) MCC was found necessary. Linear correlations were found between the MCC content and the water content and between the torque incraase and the water content, showing that the torque increase is suitable to control the process. A higher torque increase or a higher MCC content was found to increase the water content independently of each other
    corecore