28 research outputs found

    DBESM P1 (primo prototipo) Matrice di commutazione

    Get PDF
    Validazione del prototipo di scheda DBESM: na matrice di commutazione funzionale all'instradamento dei ricevitori ai back-end del sistema osservativo SR

    IFN-γ and CD38 in Hyperprogressive Cancer Development

    Get PDF
    Immune checkpoint inhibitors (ICIs) improve the survival of patients with multiple types of cancer. However, low response rates and atypical responses limit their success in clinical applications. The paradoxical acceleration of tumor growth after treatment, defined as hyperprogressive disease (HPD), is the most difficult problem facing clinicians and patients alike. The mechanisms that underlie hyperprogression (HP) are still unclear and controversial, although different factors are associated with the phenomenon. In this review, we propose two factors that have not yet been demonstrated to be directly associated with HP, but upon which it is important to focus attention. IFN-γ is a key cytokine in antitumor response and its levels increase during ICI therapy, whereas CD38 is an alternative immune checkpoint that is involved in immunosuppressive responses. As both factors are associated with resistance to ICI therapy, we have discussed their possible involvement in HPD with the conclusion that IFN-γ may contribute to HP onset through the activation of the inflammasome pathway, immunosuppressive enzyme IDO1 and activation-induced cell death (AICD) in effector T cells, while the role of CD38 in HP may be associated with the activation of adenosine receptors, hypoxia pathways and AICD-dependent T-cell depletion

    Progetto di sistema per ricevitori e back-end a srt

    Get PDF
    Si descrive l'architettura di gestione dei ricevitori, attuali e in costruzione, del radio telescopio della Sardegna (SRT) e il loro interfacciamento con tutti i back-end attuali e futuri. Vengono discusse le problematiche insite in questa nuova architettura e le possibili configurazioni, indicando anche quella scelta e i motivi della decisione

    ADK-VR2, a cell line derived from a treatment-naïve patient with SDC4-ROS1 fusion-positive primarily crizotinib-resistant NSCLC: a novel preclinical model for new drug development of ROS1- rearranged NSCLC

    Get PDF
    (NSCLCs). Several tyrosine kinase inhibitors (TKIs) have shown high efficacy in patients whose tumors harbour a ROS1 fusion. However, the limited availability of preclinical models of ROS1-positive NSCLC hinders the discovery of new drugs and the understanding of the mechanisms underlying drug resistance and strategies to overcome it. Methods: The ADK-VR2 cell line was derived from the pleural effusion of a treatment-naïve NSCLC patient bearing SDC4-ROS1 gene fusion. The sensitivity of ADK-VR2 and its crizotinib-resistant clone ADK-VR2 AG143 (selected in 3D culture in the presence of crizotinib) to different TKIs was tested in vitro, in both 2D and 3D conditions. Tumorigenic and metastatic ability was assessed in highly immunodeficient mice. In addition, crizotinib efficacy on ADK-VR2 was evaluated in vivo. Results: 2D-growth of ADK-VR2 cells was partially inhibited by crizotinib. On the contrary, the treatment with other TKIs, such as lorlatinib, entrectinib and DS-6051b, did not result in cell growth inhibition. TKIs showed dramatically different efficacy on ADK-VR2 cells, depending on the cell culture conditions. In 3D culture, ADK-VR2 growth was indeed almost totally inhibited by lorlatinib and DS-6051b. The clone ADK VR2 AG143 showed higher resistance to crizotinib treatment in vitro, compared to its parental cell line, in both 2D and 3D cultures. Similarly to ADK-VR2, ADK-VR2 AG143 growth was strongly inhibited by lorlatinib in 3D conditions. Nevertheless, ADK-VR2 AG143 sphere formation was less affected by TKIs treatment, compared to the parental cell line. In vivo experiments highlighted the high tumorigenic and metastatic ability of ADK-VR2 cell line, which, once injected in immunodeficient mice, gave rise to both spontaneous and experimental lung metastases while the crizotinib-resistant clone ADK-VR2 AG143 showed a slower growth in vivo. In addition, ADK-VR2 tumor growth was significantly reduced but not eradicated by crizotinib treatment. Conclusions: The ADK-VR2 cell line is a promising NSCLC preclinical model for the stud

    Preliminary Characterization of the Digitally Formed Beams of PHAROS2 Phased Array Feed

    Get PDF
    We describe the beamforming strategy and the preliminary laboratory characterization results of the beam pattern synthesized by the PHAROS2 Phased Array Feed (PAF), a 4-8 GHz PAF with digital beamformer for radio astronomy application. The PAF is based on an array of 10×11 dual-polarization Vivaldi antennas cryogenically cooled at 20 K along with low noise amplification modules (LNAs) cascaded with a multi-channel Warm Section (WS) receiver. We present the beamforming and test procedures used to, respectively digitally synthesize and characterize the PHAROS2 antenna array beam pattern at 6 GHz. The tests of the array were carried out at room temperature by directly connecting 24 antenna elements to the WS and iTPM digital beamformer in a laboratory measurement setup

    The Sardinia Radio Telescope Front-Ends

    Get PDF
    The 64 m diameter Sardinia Radio Telescope (SRT) has recently started an early science program using three cryogenic front-ends covering four bands: P-band (305-410 MHz), L-band (1.3-1.8 GHz), high C-band (5.7-7.7 GHz), K-band (18-26.5 GHz). The L- and the P-bands can be observed simultaneously with a single coaxial receiver installed at the primary focus, while a seven beam K-band receiver and a mono-feed high C-band receiver are installed, respectively at the secondary and beam waveguide focus. Additional front-ends are under construction to further expand the telescope observing capabilities. We report on the design and performance of the front-ends already installed on SRT and give an overview of the new ones to be completed in the near future

    Feasibility Study of a W-Band Multibeam Heterodyne Receiver for the Gregorian Focus of the Sardinia Radio Telescope

    Get PDF
    We report on the feasibility study of a W-band multibeam heterodyne receiver for the Sardinia Radio Telescope (SRT), a general purpose fully steerable 64-m diameter antenna located on the Sardinia island, Italy, managed by INAF ('Istituto Nazionale di Astrofisica,' Italy). The W-band front-end is designed for the telescope Gregorian focal plane and will detect both continuum and molecular spectral lines from astronomical sources and radio emission from the Sun in the 3 mm atmospheric window. The goal specification of the receiver is a 4×44\times 4 focal plane array operating in dual-linear polarization with a front-end consisting of feed-horns placed in cascade with waveguide Orthomode Transducers (OMTs) and LNAs (Low Noise Amplifiers) cryogenically cooled at \approx 20 K. The instantaneous FoV (Field of View) of the telescope is limited by the shaping of the 64-m primary and 7.9-m secondary mirrors. The cryogenic modules are designed to fit in the usable area of the focal plane and provide high-quality beam patterns with high antenna efficiency across the 70 - 116 GHz Radio Frequency (RF) band. The FoV covered by the 4×44\times 4 array is 2.15×2.152.15\times 2.15 arcmin2, unfilled, with separation between contiguous elements of 43 arcsec. Dual-sideband separation (2SB) down-conversion mixers are designed to be placed at the cryostat output and arranged in four four-pixel down-conversion modules with 4 - 12 GHz Intermediate Frequency (IF) bands (both Upper Side Band and Lower Side Band selectable for any pixel and polarization). The receiver utilizes a mechanical derotator to track the parallactic angle

    Status of the radio receiver system of the Sardina Radio Telescope

    Get PDF
    In this article, we present the design and performances of the radio receiver system installed at the Sardinia Radio Telescope (SRT). The three radio receivers planned for the first light of the Sardinian Telescope have been installed in three of the four possible focus positions. A dual linear polarization coaxial receiver that covers two frequency bands, the P-band (305-410 MHz) and the L-band (1.3-1.8 GHz) is installed at the primary focus. A mono-feed that covers the High C-band (5.7-7.7 GHz) is installed at the beam waveguide foci. A multi-beam (seven beams) K-band receiver (18- 26.5 GHz) is installed at the Gregorian focus. Finally, we give an overview about the radio receivers, which under test and under construction and which are needed for expanding the telescope observing capabilities

    Front-Ends and Phased Array Feeds for the Sardinia Radio Telescope

    Get PDF
    We describe the design and performance of the Front- Ends for the 64-m diameter Sardinia Radio Telescope (SRT). An early science program was completed with SRT in August 2016, following a successful technical and scientific commissioning of the telescope and of its instrumentation. We give an overview of the three cryogenic Front-Ends, covering four bands, that were deployed on SRT during the early science program: P-band (305-410 MHz), L-band (1.3-1.8 GHz), high C-band (5.7- 7.7 GHz) and K-band (18-26.5 GHz). In addition, we describe the cryogenic Front-Ends that are currently under development, among which a seven beam for S-band (3.0-4.5 GHz) a mono-feed for Low-Cband (4.2-5.6 GHz), a 19-element for Q-band (33-50 GHz) and a mono-feed for a 3 mm band. Finally, we describe the development status of a demonstrator of a cryogenic C-band Phased Array Feed (PAF) for potential use at the SRT primary focus

    The high-frequency upgrade of the Sardinia Radio Telescope

    Get PDF
    We present the status of the Sardinia Radio Telescope (SRT) and its forthcoming update planned in the next few years. The post-process scenario of the upgraded infrastructure will allow the national and international scientific community to use the SRT for the study of the Universe at high radio frequencies (up to 116 GHz), both in single dish and in interferometric mode. A telescope like SRT, operating at high frequencies, represents a unique resource for the scientific community. The telescope will be ideal for mapping quickly and with relatively high angular resolution extended radio emissions characterized by low surface brightness. It will also be essential for spectroscopic and polarimetric studies of both Galactic and extragalactic radio sources. With the use of the interferometric technique, SRT and the other Italian antennas (Medicina and Noto) will operate within the national and international radiotelescope network, allowing astronomers to obtain images of radio sources at very high angular resolution
    corecore