1,359 research outputs found

    Interaction of the legionnaires' disease bacterium (legionella pneumophila) with human phagocytes. I. L. pneumophila resists killing by polymorphonuclearleukocytes, antibody, and complement

    Get PDF
    We have previously reported that virulent egg yolk-grown Legionella pneumophila, Philadelphia 1 strain, multiplies intracellularly in human blood monocytes. We now report on the interaction between virulent L. pneumophila and human polymorphonuclear leukocytes (PMN), antibody, and complement, in vitro, under antibiotic-free conditions. L. pneumophila in concentrations ranging from 10(3) to 10(6) colony forming units (CFU)/ml are completely resistant to the bactericidal effects of 0-50 percent fresh normal human serum, even in the presence of high concentrations of rabbit or human anti-L. pneumophila antibody. L. pneumophila bacteria fix the third component of complement (C3) to their surfaces, as measured by fluorescence microscopy using rhodamine- conjugated goat anti-human C3 IgG, only when the bacteria are incubated with both specific anti-L. pneumophila antibody and complement. Similarly, L. pneumophila adhere to PMN, as measured by fluorescence microscopy, only in the presence of both specific antibody and complement. Electron microscopy revealed that these opsonized bacteria are phagocytosed by the PMN. PMN require both antibody and complement to kill L. pneumophila; even then, PMN reduced CFU of L. pneumophila by only 0.5 log under conditions in which they reduce CFU of a serum-resistant encapsulated strain of Escherichia coli by 2.5 logs. Separation of PMN-associated and nonassociated CFU of L. pneumophila revealed that the major proportion of the surviving bacteria are PMN associated. Thus, the ineffective killing of opsonized L. pneumophila is a result of a failure of PMN to kill these bacteria after they become PMN- associated. With or without antibody, PMN do not support the growth of L. pneumophila. These findings suggest that PMN, even in conjunction with the humoral immune system, do not play a decisive role in defense against the Legionnaires' disease bacterium

    Activated human monocytes inhibit the intracellular multiplication of legionnaires’ disease bacteria

    Get PDF
    We have examined the interaction between virulent egg yolk-grown L. pneumophila, Philadelphia 1 strain, and in vitro-activated human monocytes, under antibiotic-free conditions. Freshly explanted human monocytes activated by incubation with concanavalin A (Con A) and human lymphocytes inhibited the intracellular multiplication of L. pneumophila. Both Con A and lymphocytes were required for activation. Con A was consistently maximally effective at greater than or equal to 4 μg/ml. Monocytes activated by incubation with cell-free filtered supernatant from Con A-sensitized mononuclear cell cultures also inhibited the intracellular multiplication of L. pneumophil a. The most potent supernatant was obtained from mononuclear cell cultures incubated with greater than or equal to 15 μg/ml Con A for 48 h. The degree of monocyte inhibition of L. pneumophila multiplication was proportional to the length of time monocytes were preincubated with supernatant (48 {greater than} 24 {greater than} 12 h) and to the concentration of supernatant added (40 percent {greater than} 20 percent {greater than} 10 percent {greater than} 5 percent). Monocytes treated with supernatant daily were more inhibitory than monocytes treated initially only. With time in culture, monocytes progressively lost a limited degree of spontaneous inhibitory capacity and also lost their capacity to respond to supernatant with inhibition of L. pneumophila multiplication. Supernatant-activated monocytes inhibited L. pneumophila multiplication in two ways. They phagocytosed fewer bacteria, and they slowed the rate of intracellular multiplication of bacteria that were internalized. As was the case with nonactivated monocytes, antibody had no effect on the rate of intracellular multiplication in supernatant-activated monocytes. Neither supernatant-activated nor nonactivated monocytes killed L. pneumophila in the absence of antibody. Both killed a limited proportion of these bacteria in the presence of antibody and complement. We have previously reported that anti-L, pneumophila antibody and complement neither promote effective killing of L. pneumophila by human polymorphonuclear leukocytes and monocytes nor inhibit the rate of L. pneumophila multiplication in monocytes. These findings and our present report that activated monocytes do inhibit L. pneumophila multiplication indicate that cell-mediated immunity plays a major role in host defense against Legionnaires’ disease

    Yeast Mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages

    Get PDF
    We have examined the effects of various mannans, glycoproteins, oligosaccharides, monosaccharides, and sugar phosphates on the binding and phagocytosis of yeast cell walls (zymosan) by mouse peritoneal macrophages. A phosphonomannan (PO(4):mannose ratio = 1:8:6) from kloeckera brevis was the most potent inhibitor tested; it inhibited binding and phagocytosis by 50 percent at concentrations of approximately 3-5 μg/ml and 10 μg/ml, respectively. Removal of the phosphate from this mannan by mild acid and alkaline phosphatase treatment did not appreciably reduce its capacity to inhibit zymosan phagocytosis. The mannan from saccharomyces cerevisiae mutant LB301 inhibits phagocytosis by 50 percent at 0.3 mg/ml, and a neutral exocellular glucomannan from pichia pinus inhibited phagocytosis by 50 percent at 1 mg/ml. Cell wall mannans from wild type S. cervisiae X2180, its mnn2 mutant which contains mannan with predominantly 1(arrow)6- linked mannose residues, yeast exocellular mannans and O-phosphonomannans were less efficient inhibitors requiring concentrations of 1-5 mg/ml to achieve 50 percent reduction in phagocytosis. Horseradish peroxidase, which contains high-mannose type oligosaccharides, was also inhibitory. Mannan is a specific inhibitor of zymosan binding and phagocytosis. The binding and ingestion of zymosan but not of IgG- or complement-coated erythrocytes can be obliterated by plating macrophages on substrates coated with poly-L-lysin (PLL)-mannan. Zymosan uptake was completely abolished by trypsin treatment of the macrophages and reduced by 50-60 percent in the presence of 10 mM EGTA. Pretreatment of the macrophages with chloroquine inhibited zymosan binding and ingestion. These results support the proposal that the macrophage mannose/N-acetylglucosamine receptor (P. Stahl, J.S. Rodman, M.J. Miller, and P.H. Schlesinger, 1978, Proc. Natl. Acad. Sci. U.S.A. 75:1399-1403, mediates the phagocytosis of zymosan particles

    Gravity waves and the LHC: Towards high-scale inflation with low-energy SUSY

    Get PDF
    It has been argued that rather generic features of string-inspired inflationary theories with low-energy supersymmetry (SUSY) make it difficult to achieve inflation with a Hubble scale H > m_{3/2}, where m_{3/2} is the gravitino mass in the SUSY-breaking vacuum state. We present a class of string-inspired supergravity realizations of chaotic inflation where a simple, dynamical mechanism yields hierarchically small scales of post-inflationary supersymmetry breaking. Within these toy models we can easily achieve small ratios between m_{3/2} and the Hubble scale of inflation. This is possible because the expectation value of the superpotential relaxes from large to small values during the course of inflation. However, our toy models do not provide a reasonable fit to cosmological data if one sets the SUSY-breaking scale to m_{3/2} < TeV. Our work is a small step towards relieving the apparent tension between high-scale inflation and low-scale supersymmetry breaking in string compactifications.Comment: 21+1 pages, 5 figures, LaTeX, v2: added references, v3: very minor changes, version to appear in JHE

    CD9 Tetraspanin Interacts with CD36 on the Surface of Macrophages: A Possible Regulatory Influence on Uptake of Oxidized Low Density Lipoprotein

    Get PDF
    CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
    corecore