22 research outputs found

    Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb(-/-) Microglia

    Get PDF
    Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb(-/-) mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb(-/-) mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb(-/-) microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb(-/-) microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune-and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes.Peer reviewe

    Phylodynamic and Phylogeographic Profiles of Subtype B HIV-1 Epidemics in South Spain

    Get PDF
    Since 1982, HIV-1 epidemics have evolved to different scenarios in terms of transmission routes, subtype distribution and characteristics of transmission clusters. We investigated the evolutionary history of HIV-1 subtype B in south Spain.We studied all newly diagnosed HIV-1 subtype B patients in East Andalusia during the 2005-2012 period. For the analysis, we used the reverse transcriptase and protease sequences from baseline resistance, and the Trugene® HIV Genotyping kit (Siemens, Barcelona, Spain). Subtyping was done with REGA v3.0. The maximum likelihood trees constructed with RAxML were used to study HIV-1 clustering. Phylogeographic and phylodynamic profiles were studied by Bayesian inference methods with BEAST v1.7.5 and SPREAD v1.0.6.Of the 493 patients infected with HIV-1 subtype B, 234 grouped into 55 clusters, most of which were small (44 clusters ≤ 5 patients, 31 with 2 patients, 13 with 3). The rest (133/234) were grouped into 11 clusters with ≥ 5 patients, and most (82%, 109/133) were men who have sex with men (MSM) grouped into 8 clusters. The association with clusters was more frequent in Spanish (p = 0.02) men (p< 0.001), MSM (p<0.001) younger than 35 years (p = 0.001) and with a CD4+ T-cell count above 350 cells/ul (p<0.001). We estimated the date of HIV-1 subtype B regional epidemic diversification around 1970 (95% CI: 1965-1987), with an evolutionary rate of 2.4 (95%CI: 1.7-3.1) x 10-3 substitutions/site/year. Most clusters originated in the 1990s in MSMs. We observed exponential subtype B HIV-1 growth in 1980-1990 and 2005-2008. The most significant migration routes for subtype B went from inland cities to seaside locations.We provide the first data on the phylodynamic and phylogeographic profiles of HIV-1 subtype B in south Spain. Our findings of transmission clustering among MSMs should alert healthcare managers to enhance preventive measures in this risk group in order to prevent future outbreaks

    The ‘Complex World’ of the Hsp90 Co-chaperone R2TP

    No full text
    The Hsp90 co-chaperone R2TP consists of the AAA+ ATPases, RUVBL1 (Rvb1p in yeast) and RUVBL2 (Rvb2 in yeast), which together make up a heterohexameric ring, in complex with PIH1D1 (Pih1p in yeast) and RPAP3 (Tah1p in yeast). R2TP is involved in the activation of client proteins, such as phosphatidylinositol 3 kinase-related kinases, including mTORC1, ATM, DNA-PK, SMG and ATR/ATRIP, or in the assembly of protein complexes including those of RNA polymerase and snoRNPs, amongst others. In other cases, the role of the TP component (RPAP3-PIH1D1) of R2TP, and consequently Hsp90, is controversial. None-the-less, the extensive role of RUVBL1-RUVBL2 complex in cells, either with or without Hsp90, means that dysfunction of these AAA+ ATPases, Hsp90 or components of the complexes they assemble leads to diseases such as cancer, ciliary dyskinesia and in the case of defects in ATM to ataxia telangiectasia-like syndrome. Recent advances in determining the structure of the R2TP complex has led to an increased understanding of the assembly and function of the R2TP complex. In this review we discuss the current structural advances in determining the architecture of the R2TP complex and the advances made in understanding its active state
    corecore