15 research outputs found
Recommended from our members
Numerical investigation of breast tumour detection using multi-static radar
A breast cancer detection technique using multi-static radar is proposed herein. For the first time, images are produced using this technique, using backscatter data produced from an anatomically realistic 2D MRI-derived FDTD model of the breast. Successful detection of a 2-mm-diameter tumour is demonstrated, although clarity of detection is dependent on mitigating antenna mutual coupling and skin reflections
A versatile all-optical parity-time signal processing device using a Bragg grating induced using positive and negative Kerr-nonlinearity
The properties of gratings with Kerr nonlinearity and PT symmetry are investigated in this paper. The impact of the gain and loss saturation on the response of the grating is analysed for different input intensities and gain/loss parameters. Potential applications of these gratings as
switches, logic gates and amplifiers are also shown
Theory and numerical modelling of parity-time symmetric structures in photonics: introduction and grating structures in one dimension
A class of structures based on PT PT-symmetric Bragg gratings in the presence of both gain and loss is studied. The basic concepts and properties of parity and time reversal in one-dimensional structures that possess idealised material properties are given. The impact of realistic material properties on the behaviour of these devices is then investigated. Further extension to include material non-linearity is used to study an innovative all-optical
memory device
Reconsideration of the notion of health promotion for citizens within the Integrated Community Care System (ICCS) in Japan
The spectral behaviour and the real-time operation of Parity-Time (PT) symmetric coupled resonators are investigated. A Boundary Integral Equation (BIE) model is developed to study these structures in the frequency domain. The impact of realistic gain/loss material properties on the operation of the PT-symmetric coupled resonators is also investigated using the time-domain Transmission-Line Modelling (TLM) method. The BIE method is also used to study the behaviour of an array of PT-microresonator photonic molecules
Ultra-Wideband Antennas
The focus of UWB antenna research activity has matured in recent years and currently mainly concentrates on applications such as biomedicine and security. Early UWB antenna designs were driven by the FCC allocation of spectrum in 2002 and focussed on obtaining wide impedance bandwidths with reasonable group delay characteristics. Many of these were simple planar monopoles antennas with canonical geometries. The emergence of new applications channelled the emphasis towards miniaturisation and integration into devices. This required optimisation of the antenna geometries to ensure that good system performance is achieved from the integrated antenna. Many optimisation techniques are available including the spline technique to generate the outline of the antenna element and ground plane. Simple methods based on genetic algorithms are employed and evolutionary algorithms which are capable of optimising for multiple goals are beneficial when multiple antenna parameters are simultaneously investigated. These techniques have proven advantageous especially when time-domain performance is critical and provide solutions for both single-ended and differential feed arrangements. The main applications using UWB channels in the 3.1 GHz −10.6 GHz spectrum are localization and tracking applications, mainly employing impulse radio UWB imaging, and generally using linear polarization. However circularly-polarized UWB antennas have been developed, both directional and omnidirectional and are being investigated across various systems