12 research outputs found

    Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model

    No full text
    Gap junctions (GJs) have been demonstrated to communicate cell death signals from apoptotic to healthy cells, thereby spatially extending apoptosis. Before being incorporated into GJs, hemichannels (hemi-GJs) are normally closed but recent evidence suggests that they can be opened by various messengers and conditions, thereby forming a pore through which molecules can enter or leave the cell potentially leading to cell death. The aim of this study was to determine the contribution of GJs and hemichannels in the communication of apoptosis toward surrounding cells. We induced apoptosis in C6 glioma cells stably transfected with connexin (Cx)43, with cytochrome C (cytC) using in situ electroporation and found that healthy surrounding cells underwent apoptotic transformation. Work with various cell death markers, wild-type (WT) and Cx43-expressing cells, inhibitors of GJs and/or hemichannels, and Cx43 gene silencing showed that GJs contribute to the spread of apoptosis in a zone next to where apoptosis was triggered whereas hemichannels also promoted cell death beyond this area. Buffering cytoplasmic Ca2+ changes inhibited the spread of apoptosis in both cases. We conclude that Cx43 hemichannels, in concert with their GJ counterparts, play a role in communicating cytC-induced apoptotic cell death messages

    Comparative genomics of phages and prophages in lactic acid bacteria

    No full text
    Comparative phage genomics has become possible due to the availability of more than 100 complete phage genome sequences and the development of powerful bioinformatics tools. This technology, profiting from classical molecular-biology knowledge, has opened avenues of research for topics, which were difficult to address in the past. Now, it is possible to retrace part of the evolutionary history of phage modules by comparative genomics. The diagnosis of relatedness is hereby not uniquely based on sequence similarity alone, but includes topological considerations of genome organization. Detailed transcription maps have allowed in silico predictions of genome organization to be verified and refined. This comparative knowledge is providing the basis for a new taxonomic classification concept for bacteriophages infecting low G+C-content Gram-positive bacteria based on the genetic organization of the structural gene module. An Sfi21-like and an Sfi11-like genus of Siphoviridae is proposed. The gene maps of many phages show remarkable synteny in their structural genes defining a lambda super-group within Siphoviridae. A hierarchy of relatedness within the lambda super-group suggests elements of vertical evolution in Siphoviridae. Tailed phages are the result of both vertical and horizontal evolution and are thus fascinating objects for the study of molecular evolution. Prophage sequences integrated into the genomes of their bacterial host present theoretical challenges for evolutionary biologists. Prophages represent up to 10% of the genome in some LAB. In pathogenic streptococci prophages confer genes of selective value for the lysogenic cell. The lysogenic conversion genes are located between the lysin gene and the right phage attachment site. Non-attributed genes were found at the same genome position of prophages from lactic streptococci. These genes belong to the few prophage genes transcribed in the lysogen. Prophages from dairy bacteria might therefore also contribute to the evolutionary fitness of non-pathogenic LAB
    corecore