11 research outputs found
Germination capacity and viability of threatened species collections in seed banks
Facing the current biodiversity crisis, the value of ex situ conservation has been increasingly acknowledged in international treaties and legislations. Seed banks are a good way of conserving biodiversity, providing that seeds are of high quality and at maximum viability. However, despite the number of established ex situ facilities, there is little information on seed viability in botanic garden seed banks. This paper analyses the status of the seed collection of the National Botanic Garden of Belgium by determining the germination capacity and viability of seeds that have been stored for 1-26 years. It aims at: (1) ensuring that existing storage conditions provide effective ex situ conservation of threatened species; (2) providing viability data on threatened species; (3) planning future collection and storage efforts for seeds of West European species of conservation value. Results from this study showed that the germination and viability percentages of the 250 tested species reached on average 59 and 79% respectively. Some families typically performed better than others. Within a species, consistent results were not always obtained. Over a quarter of accessions exhibited some degree of dormancy. Considering the current lack of knowledge in seed germination and dormancy of many rare and threatened species, we believe that the quality of a seed collection should be estimated by its viability and not by its germination percentage. This study calls for further research in order to better understand the biology of a range of threatened native species. © Springer Science+Business Media B.V. 2009.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Unexpected long-range edge-to-forest interior environmental gradients
We examined the relationships between distance-to-edge and environmental factors inferred from mean plant indicator values across large distance-to-edge and patch size gradients. Floristic composition, landscape metrics and site variables (climate, soil and forest management) were collected on 19,989 plots in 1,801 forest patches in Northern France using the French National Forest Inventory. Statistical models were applied to mean plant indicator values (MIV) from Ellenberg and Ecoplant databases for soil pH, soil nitrogen (N), soil humidity (F), light (L) and air temperature (Ta) using distance-to-edge and forest patch size as predictors. The five mean indicator values significantly varied with distance-to-edge and MIV pH, N and Ta decreased over distances in excess of 500 m. Consistent very long edge-to-interior gradients were also detected for site variables. The distance-to-edge effect remained significant after controlling for site differences, especially for MIV pH and N. Significant edge-to-core gradients of MIV were detected over much larger ranges than previously recognised. Neither the presence of an ecological boundary between forest and the surrounding matrix, nor microclimate, soil or forest management heterogeneity within forest patches can fully explain this long edge-to-interior gradient observed in MIV. Two hypotheses are discussed for MIV pH and N: (1) soil eutrophication, due to atmospheric N deposition, which could occur deeper into forest-cores than previously acknowledged; (2) land use legacies, as the periphery of ancient forests is more often occupied by recent forests where former agricultural practices have irreversibly modified topsoil properties. Land use history data would help identify the drivers underlying these long-range edge gradients
Patterns and Trends in Urban Biodiversity and Landscape Design
Urbanization destroys or modifi es native habitats and creates new ones with its infrastructure. Because of these changes, urban landscapes favor non-native and native species that are generalists. Nevertheless, cities reveal a great variety of habitats and species, and, especially in temperate cities, the diversity of vascular plants and birds can be higher than in the surrounding landscapes. The actual occurrence of a species, however, depends on habitat availability and quality, the spatial arrangements of habitats, species pools, a species’ adaptability and natural history, and site history. In addition, cities are particularly human-made ecological systems. Top- down and bottom-up activities of planners, land managers, and citizens create the urban biodiversity in general and in detail. Plants and animals in cities are the everyday life contact with nature of the most humans on our earth. The intrinsic interplay of social and ecological systems with a city often forms unique biotic assemblages inherent to that city. To support native biodiversity, landscape architects, conservation biologists, and other groups are linking landscape design with ecosystem structure and function to create and restore habitats and reintroduce native species in cities
Orchid re-introductions: an evaluation of success and ecological considerations using key comparative studies from Australia
With global biodiversity in decline, there is now an urgent requirement to take ameliorative action for endangered species in the form of reintroductions. For the highly diverse orchid family, many species face imminent extinction. Successful reintroductions that result in self-sustaining populations require not only an understanding of existing threats, but an in-depth understanding of species ecology. Increasingly, translocations, ranging from re-introductions to assisted colonisation, are being adopted as recovery actions. Do these translocations mitigate threatening processes and account for the two key ecological attributes for orchid survival; pollinator and mycorrhizal presence? Here, we conducted a literature review identifying the known threats to orchid survival and their necessary mitigation strategies. Next, we evaluated the success of 74 published international orchid translocations on 66 species against a consideration of orchid ecological attributes. Lastly, we empirically tested an additional 22 previously unpublished re-introductions on 12 species undertaken since 2007 against a re-introduction process that accounts for identified threats and orchid ecological attributes. We identified habitat destruction, weed invasion, herbivory, illegal collection, pollinator decline, pathogens and climate change as critical threats to orchid survival. In our global review based on published translocations, the average survival rate, 1-year post translocation was 66 % yet only 2.8 % of studies reported natural recruitment in field sites. Although survival of translocated orchids is clearly being achieved, these programmes did not relate orchid growth and development to key ecological requirements of orchid population resilience, pollinator and mycorrhizal ecology. Ensuring pollinator and mycorrhizal presence shows that these two factors alone are key factors influencing survival and persistence in an Australian review of 22 previously unpublished orchid re-introductions. In the Australian review flowering in the year following, out-planting was observed for 81 % of the re-introductions with seed set occurring in 63 % of re-introductions within the length of the study. Recruitment was observed in 18 % of the Australian re-introduced populations indicating a degree of population resilience. As orchid re-introductions will be a major strategy for wild orchid conservation in the future, we present a framework for orchid re-introductions, including criteria for success. We recommend symbiotic propagation and, for specialised pollination syndromes, the study of pollinator interactions prior to site selection and re-introduction of plants