17 research outputs found

    Fractal Dimensions and Scaling Laws in the Interstellar Medium and Galaxy Distributions: a new Field Theory Approach

    Get PDF
    We develop a field theoretical approach to the cold interstellar medium (ISM) and large structure of the universe. We show that a non-relativistic self- gravitating gas in thermal equilibrium with variable number of atoms or fragments is exactly equivalent to a field theory of a scalar field phi(x) with exponential self-interaction. We analyze this field theory perturbatively and non-perturbatively through the renormalization group(RG).We show scaling behaviour (critical) for a continuous range of the physical parameters as the temperature. We derive in this framework the scaling relation M(R) \sim R^{d_H} for the mass on a region of size R, and Delta v \sim R^\frac12(d_H -1) for the velocity dispersion. For the density-density correlations we find a power-law behaviour for large distances \sim |r_1 - r_2|^{2D - 6}.The fractal dimension D turns to be related with the critical exponent \nu by D = 1/ \nu. Mean field theory yields \nu = 1/2, D = 2. Both the Ising and the mean field values are compatible with the present ISM observational data:1.4\leq D \leq 2. We develop a field theoretical approach to the galaxy distribution considering a gas of self-gravitating masses on the FRW background, in quasi-thermal equi- librium. We show that it exhibits scaling behaviour by RG methods. The galaxy correlations are computed without assuming homogeneity. We find \sim r^{D-3} .Thetheoryallowstocomputethethreeandhigherdensitycorrelatorswithoutanyassumption.WefindthattheconnectedNpointsdensityscalesasr1N(D3),when. The theory allows to compute the three and higher density correlators without any assumption.We find that the connected N-points density scales as r_1^{N(D-3)}, when r_1 >> r_i

    Nontuberculous mycobacteria in milk from positive cows in the intradermal comparative cervical tuberculin test: implications for human tuberculosis infections

    No full text
    ABSTRACT Although the tuberculin test represents the main in vivo diagnostic method used in the control and eradication of bovine tuberculosis, few studies have focused on the identification of mycobacteria in the milk from cows positive to the tuberculin test. The aim of this study was to identify Mycobacterium species in milk samples from cows positive to the comparative intradermal test. Milk samples from 142 cows positive to the comparative intradermal test carried out in 4,766 animals were aseptically collected, cultivated on Lowenstein-Jensen and Stonebrink media and incubated for up to 90 days. Colonies compatible with mycobacteria were stained by Ziehl-Neelsen to detect acid-fast bacilli, while to confirm the Mycobacterium genus, conventional PCR was performed. Fourteen mycobacterial strains were isolated from 12 cows (8.4%). The hsp65 gene sequencing identified M. engbaekii (n=5), M. arupense (n=4), M. nonchromogenicum (n=3), and M. heraklionense (n=2) species belong to the Mycobacterium terrae complex. Despite the absence of M. tuberculosis complex species in the milk samples, identification of these mycobacteria highlights the risk of pathogen transmission from bovines to humans throughout milk or dairy products, since many of mycobacterial species described here have been reported in pulmonary and extrapulmonary diseases both in immunocompetent and immunocompromised people

    Nutrient vectors and riparian processing: A review with special reference to African semiarid Savanna ecosystems

    No full text
    corecore