100 research outputs found
Association of Amyloid Pathology With Myelin Alteration in Preclinical Alzheimer Disease
IMPORTANCE: The accumulation of aggregated β-amyloid and tau proteins into plaques and tangles is a central feature of Alzheimer disease (AD). While plaque and tangle accumulation likely contributes to neuron and synapse loss, disease-related changes to oligodendrocytes and myelin are also suspected of playing a role in development of AD dementia. Still, to our knowledge, little is known about AD-related myelin changes, and even when present, they are often regarded as secondary to concomitant arteriosclerosis or related to aging.
OBJECTIVE: To assess associations between hallmark AD pathology and novel quantitative neuroimaging markers while being sensitive to white matter myelin content.
DESIGN, SETTING AND PARTICIPANTS: Magnetic resonance imaging was performed at an academic research neuroimaging center on a cohort of 71 cognitively asymptomatic adults enriched for AD risk. Lumbar punctures were performed and assayed for cerebrospinal fluid (CSF) biomarkers of AD pathology, including β-amyloid 42, total tau protein, phosphorylated tau 181, and soluble amyloid precursor protein. We measured whole-brain longitudinal and transverse relaxation rates as well as the myelin water fraction from each of these individuals.
MAIN OUTCOMES AND MEASURES: Automated brain mapping algorithms and statistical models were used to evaluate the relationships between age, CSF biomarkers of AD pathology, and quantitative magnetic resonance imaging relaxometry measures, including the longitudinal and transverse relaxation rates and the myelin water fraction.
RESULTS: The mean (SD) age for the 19 male participants and 52 female participants in the study was 61.6 (6.4) years. Widespread age-related changes to myelin were observed across the brain, particularly in late myelinating brain regions such as frontal white matter and the genu of the corpus callosum. Quantitative relaxometry measures were negatively associated with levels of CSF biomarkers across brain white matter and in areas preferentially affected in AD. Furthermore, significant age-by-biomarker interactions were observed between myelin water fraction and phosphorylated tau 181/β-amyloid 42, suggesting that phosphorylated tau 181/β-amyloid 42 levels modulate age-related changes in myelin water fraction.
CONCLUSIONS AND RELEVANCE: These findings suggest amyloid pathologies significantly influence white matter and that these abnormalities may signify an early feature of the disease process. We expect that clarifying the nature of myelin damage in preclinical AD may be informative on the disease’s course and lead to new markers of efficacy for prevention and treatment trials
Biomarker clusters are differentially associated with longitudinal cognitive decline in late midlife
The ability to detect preclinical Alzheimer’s disease is of great importance, as this stage of the Alzheimer’s continuum is believed to provide a key window for intervention and prevention. As Alzheimer’s disease is characterized by multiple pathological changes, a biomarker panel reflecting co-occurring pathology will likely be most useful for early detection. Towards this end, 175 late middle-aged participants (mean age 55.9 ± 5.7 years at first cognitive assessment, 70% female) were recruited from two longitudinally followed cohorts to undergo magnetic resonance imaging and lumbar puncture. Cluster analysis was used to group individuals based on biomarkers of amyloid pathology (cerebrospinal fluid amyloid-β42/amyloid-β40 assay levels), magnetic resonance imaging-derived measures of neurodegeneration/atrophy (cerebrospinal fluid-to-brain volume ratio, and hippocampal volume), neurofibrillary tangles (cerebrospinal fluid phosphorylated tau181 assay levels), and a brain-based marker of vascular risk (total white matter hyperintensity lesion volume). Four biomarker clusters emerged consistent with preclinical features of (i) Alzheimer’s disease; (ii) mixed Alzheimer’s disease and vascular aetiology; (iii) suspected non-Alzheimer’s disease aetiology; and (iv) healthy ageing. Cognitive decline was then analysed between clusters using longitudinal assessments of episodic memory, semantic memory, executive function, and global cognitive function with linear mixed effects modelling. Cluster 1 exhibited a higher intercept and greater rates of decline on tests of episodic memory. Cluster 2 had a lower intercept on a test of semantic memory and both Cluster 2 and Cluster 3 had steeper rates of decline on a test of global cognition. Additional analyses on Cluster 3, which had the smallest hippocampal volume, suggest that its biomarker profile is more likely due to hippocampal vulnerability and not to detectable specific volume loss exceeding the rate of normal ageing. Our results demonstrate that pathology, as indicated by biomarkers, in a preclinical timeframe is related to patterns of longitudinal cognitive decline. Such biomarker patterns may be useful for identifying at-risk populations to recruit for clinical trials
Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's Disease
Polygenic risk scores (PRSs) have been used to combine the effects of variants with small effects identified by genome-wide association studies. We explore the potential for using pathway-specific PRSs as predictors of early changes in Alzheimer’s disease (AD)-related biomarkers and cognitive function. Participants were from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of adults who were cognitively asymptomatic at enrollment and enriched for a parental history of AD. Using genes associated with AD in the International Genomics of Alzheimer’s Project’s meta-analysis, we identified clusters of genes that grouped into pathways involved in amyloid-β (Aβ) deposition and neurodegeneration: Aβ clearance, cholesterol metabolism, and immune response. Weighted pathway-specific and overall PRSs were developed and compared to APOE alone. Mixed models were used to assess whether each PRS was associated with cognition in 1,200 individuals, cerebral Aβ deposition measured using amyloid ligand (Pittsburgh compound B) positron emission imaging in 168 individuals, and cerebrospinal fluid Aβ deposition, neurodegeneration, and tau pathology in 111 individuals, with replication performed in an independent sample. We found that PRSs including APOE appeared to be driven by the inclusion of APOE, suggesting that the pathway-specific PRSs used here were not more predictive than an overall PRS or APOE alone. However, pathway-specific PRSs could prove to be useful as more knowledge is gained on the genetic variants involved in specific biological pathways of AD
CSF metabolites associate with CSF tau and improve prediction of Alzheimer's disease status
Introduction: Cerebrospinal fluid (CSF) total tau (t-tau) and phosphorylated tau (p-tau) are biomarkers of Alzheimer's disease (AD), yet much is unknown about AD-associated changes in tau metabolism and tau tangle etiology. Methods: We assessed the variation of t-tau and p-tau explained by 38 previously identified CSF metabolites using linear regression models in middle-age controls from the Wisconsin Alzheimer's Disease Research Center, and predicted AD/mild cognitive impairment (MCI) versus an independent set of older controls using metabolites selected by the least absolute shrinkage and selection operator (LASSO). Results: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau and p-tau, respectively. Of these, seven LASSO-selected metabolites improved the prediction ability of AD/MCI versus older controls (area under the curve score increased from 0.92 to 0.97 and 0.78 to 0.93) compared to the base model. Discussion: These tau-correlated CSF metabolites increase AD/MCI prediction accuracy and may provide insight into tau tangle etiology
Age-Related Tau Burden and Cognitive Deficits Are Attenuated in KLOTHO KL-VS Heterozygotes
Background:
Identification of new genetic variants that modify Alzheimer’s disease (AD) risk will elucidate novel targets for curbing the disease progression or delaying symptom onset.
Objective:
To examine whether the functionally advantageous KLOTHO gene KL-VS variant attenuates age-related alteration in cerebrospinal fluid (CSF) biomarkers or cognitive function in middle-aged and older adults enriched for AD risk.
Methods:
Sample included non-demented adults (N = 225, mean age = 63±8, 68% women) from the Wisconsin Registry for Alzheimer’s Prevention and the Wisconsin Alzheimer’s Disease Research Center who were genotyped for KL-VS, underwent CSF sampling and had neuropsychological testing data available proximal to CSF draw. Covariate-adjusted multivariate regression examined relationships between age group (Younger versus Older; mean split at 63 years), AD biomarkers, and neuropsychological performance tapping memory and executive function, and whether these relationships differed between KL-VS non-carriers (KL-VSNC) and heterozygote (KL-VSHET).
Results:
In the pooled analyses, older age was associated with higher levels of total tau (tTau), phosphorylated tau (pTau), and their respective ratios to amyloid-β (Aβ)42 (ps ≤ 0.002), and with poorer performance on neuropsychological tests (ps ≤ 0.001). In the stratified analyses, KL-VSNC exhibited this age-related pattern of associations with CSF biomarkers (all ps ≤ 0.001), and memory and executive function (ps ≤ 0.003), which were attenuated in KL-VSHET (ps ≥ 0.14).
Conclusion:
Worse memory and executive function, and higher tau burden with age were attenuated in carriers of a functionally advantageous KLOTHO variant. KL-VS heterozygosity seems to be protective against age-related cognitive and biomolecular alterations that confer risk for AD
Amyloid-β positivity is less prevalent in cognitively unimpaired KLOTHO KL-VS heterozygotes
Background:
Klotho, encoded by the KLOTHO gene, is an anti-aging and neuroprotective protein. KLOTHO KL-VS heterozygosity (KL-VSHET) is hypothesized to be protective against the accumulation of Alzheimer's disease (AD) neuropathological hallmarks (amyloid-β (Aβ) and tau).
//
Objective:
We examine whether being positive for Aβ (A+) or tau (T+), or A/T joint status [positive for Aβ (A + T-), tau (A-T+), both (A + T+) or neither (A-T-)] vary by KL-VS and whether serum klotho protein levels vary based on A+, T+, or A/T status in a cohort enriched for AD risk.
//
Methods:
The sample consisted of 704 cognitively unimpaired, late middle-aged, and older adults; MeanAge(SD) = 64.9(8.3). Serum klotho was available for a sub-sample of 396 participants; MeanAge(SD) = 66.8(7.4). Covariate-adjusted logistic regression examined whether A + or T+, and multinomial regression examined whether A/T status, vary by KL-VS genotype. Covariate-adjusted linear regression examined whether serum klotho levels differ based on A+, T+, or A/T status.
//
Results:
A+ prevalence was lower in KL-VSHET (p = 0.05), with no differences in T + prevalence (p = 0.52). KL-VSHET also had marginally lower odds of being A + T- (p = 0.07). Serum klotho levels did not differ based on A+, T+, or A/T status (all ps ≥ 0.40).
//
Conclusions:
KL-VSHET is associated with lower odds of being positive for Aβ, regardless of whether one is also positive for tau. Conversely, the likelihood of being tau positive did not differ based on KL-VS genotype. Our findings add to the growing KLOTHO literature and suggests the need for further research focused on understanding the mechanisms underlying KL-VS-related putative resilience to AD
CSF metabolites associated with biomarkers of Alzheimer’s disease pathology
INTRODUCTION: Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer’s disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. METHODS: The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer’s Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer’s Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. RESULTS: Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aβ42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aβ40 and α-synuclein. DISCUSSION: This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal
The recency ratio assessed by story recall is associated with cerebrospinal fluid levels of neurodegeneration biomarkers
Recency refers to the information learned at the end of a study list or task. Recency forgetting, as tracked by the ratio between recency recall in immediate and delayed conditions, i.e., the recency ratio (Rr), has been applied to list-learning tasks, demonstrating its efficacy in predicting cognitive decline, conversion to mild cognitive impairment (MCI), and cerebrospinal fluid (CSF) biomarkers of neurodegeneration. However, little is known as to whether Rr can be effectively applied to story recall tasks. To address this question, data were extracted from the database of the Alzheimer's Disease Research Center at the University of Wisconsin – Madison. A total of 212 participants were included in the study. CSF biomarkers were amyloid-beta (Aβ) 40 and 42, phosphorylated (p) and total (t) tau, neurofilament light (NFL), neurogranin (Ng), and α-synuclein (a-syn). Story Recall was measured with the Logical Memory Test (LMT). We carried out Bayesian regression analyses with Rr, and other LMT scores as predictors; and CSF biomarkers (including the Aβ42/40 and p-tau/Aβ42 ratios) as outcomes. Results showed that models including Rr consistently provided best fits with the data, with few exceptions. These findings demonstrate the applicability of Rr to story recall and its sensitivity to CSF biomarkers of neurodegeneration, and encourage its inclusion when evaluating risk of neurodegeneration with story recall
A comparison of diagnostic performance of word-list and story recall tests for biomarker-determined Alzheimer’s disease
BACKGROUND: Wordlist and story recall tests are routinely employed in clinical practice for dementia diagnosis. In this study, our aim was to establish how well-standard clinical metrics compared to process scores derived from wordlist and story recall tests in predicting biomarker determined Alzheimer’s disease, as defined by CSF ptau/Aβ42 ratio. METHODS: Data from 295 participants (mean age = 65 ± 9.) were drawn from the University of Wisconsin – Madison Alzheimer’s Disease Research Center (ADRC) and Wisconsin Registry for Alzheimer’s Prevention (WRAP). Rey’s Auditory Verbal Learning Test (AVLT; wordlist) and Logical Memory Test (LMT; story) data were used. Bayesian linear regression analyses were carried out with CSF ptau/Aβ42 ratio as outcome. Sensitivity analyses were carried out with logistic regressions to assess diagnosticity. RESULTS: LMT generally outperformed AVLT. Notably, the best predictors were primacy ratio, a process score indexing loss of information learned early during test administration, and recency ratio, which tracks loss of recently learned information. Sensitivity analyses confirmed this conclusion. CONCLUSIONS: Our study shows that story recall tests may be better than wordlist tests for detection of dementia, especially when employing process scores alongside conventional clinical scores
Neuroimaging of tissue microstructure as a marker of neurodegeneration in the AT(N) framework: defining abnormal neurodegeneration and improving prediction of clinical status
Background: Alzheimer’s disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neurodegeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been proposed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical. Methods: Participants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray matter and subcortical white matter regions of interest. We used general logistic regression with receiver operating characteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination). Results: Using internal robust norms, we found that NODDI metrics correlate with worsening cognitive status and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic prediction accuracy of AD clinical status, compared with models using CSF A and T status alone. Conclusion: Using a robust norms approach, we show that abnormal AD-related neurodegeneration can be detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are potential sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, given the small sample sizes, the exploratory nature of the work must be acknowledged
- …
