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Abstract

Introduction:Cerebrospinal fluid (CSF) total tau (t-tau) andphosphorylated tau (p-tau)

are biomarkers of Alzheimer’s disease (AD), yetmuch is unknownaboutAD-associated

changes in taumetabolism and tau tangle etiology.

Methods: We assessed the variation of t-tau and p-tau explained by 38 previously

identified CSF metabolites using linear regression models in middle-age controls from

the Wisconsin Alzheimer’s Disease Research Center, and predicted AD/mild cogni-

tive impairment (MCI) versus an independent set of older controls using metabolites

selected by the least absolute shrinkage and selection operator (LASSO).

Results: The 38 CSF metabolites explained 70.3% and 75.7% of the variance in t-tau

andp-tau, respectively.Of these, seven LASSO-selectedmetabolites improved the pre-

diction ability of AD/MCI versus older controls (area under the curve score increased

from 0.92 to 0.97 and 0.78 to 0.93) compared to the basemodel.

Discussion: These tau-correlated CSF metabolites increase AD/MCI prediction accu-

racy andmay provide insight into tau tangle etiology.
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1 INTRODUCTION

One of the defining neuropathological changes in Alzheimer’s dis-

ease (AD) is the intraneuronal aggregates of hyperphosphorylated and

misfolded tau that give rise to neurofibrillary tangles and neuropil

threads.1 Their corresponding biomarkers in cerebrospinal fluid (CSF),

total tau (t-tau), and phosphorylated tau (p-tau), can predict clinical

AD and its progression.2 Moreover, a new plasma p-tau biomarker

(p-tau181) has recently been associatedwith ADpathology.3 Research

has been done to understand tau changes and how they happen.4,5 For

example, it has been shown that the dysregulation of kinases and phos-

phatases results in three to four times greater quantities of p-tau in the

brains of AD patients than in normal adult brains2 but the pathologic

processes remain largely unknown.

Recent advancements in metabolomics technologies allow

researchers to study multiple small molecules (< 1500 Da), such

as amino acids, fatty acids, and carbohydrates, simultaneously within

a biological system.6 Metabolites can be influenced by biological

changes resulting from upstream molecular processes such as genetic

mutations, as well as exogenous changes caused by environmental

exposures (e.g., diet, medications, and physical activity). Moreover,

compared to RNA transcripts and proteins, metabolites are more

relevant to the current physiological state of a cell, and their abnormal

levels and relative ratios can reflect disease progression; thus, metabo-

lites serve as appropriate targets for health outcomes research.7

To date, there have been numerous targeted or untargeted human

blood metabolomic studies that focus on AD clinical status or CSF

biomarkers.8 For example, Toledo et al.9 have conducted a network

analysis using serum metabolites in participants from the Alzheimer’s

Disease Neuroimaging Initiative and found that accumulation of

acylcarnitine species indicates malfunction and alterations in tau

metabolism. However, few studies have been conducted to assess the

association between CSFmetabolites and CSF tau. CSF communicates

freely with the interstitial fluid that bathes the neurons and other cell

types of the brain, spinal cord, and the cranial and spinal nerves,10

whichmakes it an ideal source to study the pathological changes occur-

ring inADbrains. By linking twowell-establishedADCSFbiomarkers—

CSF t-tau and p-tau, which reflect tau secretion and phosphoryla-

tion, and predict neurodegeneration and cortical tangle formation,

respectively—11withCSFmetabolites, additionalmechanistic informa-

tion behind the development of pathological alterations related to tau

may be revealed. The findings from studying CSF metabolites could

ultimately be translated into potential AD prevention through modifi-

able risk factors (e.g., dietary interventions), better prognostic indica-

tors, or new drug targets.

Darst et al.12 constructed an inter-omics network consisting of

whole blood gene expression, plasma metabolites, CSF metabolites,

and AD risk factors in 1111 non-Hispanic White participants from

the Wisconsin Registry for Alzheimer’s Prevention (WRAP). Within

this inter-omics network, a cluster of 38 CSF metabolites was identi-

fied in the subset of 141 individuals in which CSF was collected, with

each individual metabolite being significantly correlated (P threshold:

≤6.1 × 10−10) with CSF t-tau and p-tau, and these collective metabo-

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional sources (e.g., PubMed). Although the

direct studies of cerebrospinal fluid (CSF) metabolites

and tau are limited, there have been numerous relevant

association studies between metabolites in other sample

types and CSF tau, biological in vivo studies, and system-

atic reviews of these metabolites and metabolism. Rele-

vant citations are appropriately cited.

2. Interpretation: Our findings confirmed the previously

reported correlation between a cluster of 38 CSF

metabolites and tau and expanded the biological knowl-

edge of the metabolites to better understand their roles

in Alzheimer’s disease (AD) pathogenesis.

3. Future directions: Following the findings of this article,

additional studies in larger study populations are war-

ranted, such as investigating: (a) the ability of the selected

CSF metabolites to serve as effective biomarkers for AD

diagnosis in a clinical setting, (b) the biologicalmechanism

between specific CSF metabolites and tau, (c) the poten-

tial drug development based on thesemetabolites, and (d)

the genetics behind thesemetabolites.

lites accounting for 60.7% and 64.0% of the variation of t-tau and p-

tau, respectively. In this study, we aimed to (1) replicate these findings

and evaluate the predictive ability of these CSFmetabolites in an inde-

pendent sample (the IMPACT cohort) from theWisconsin Alzheimer’s

Disease Research Center (Wisconsin ADRC); (2) examine the predic-

tive performance of the samemetabolites present in plasma inWRAP;

(3) identify the major metabolites driving this cluster in the IMPACT

and WRAP cohorts and, in an independent sample, evaluate whether

they can be used as potential biomarkers to enhance the prediction of

AD or mild cognitive impairment (MCI); and (5) understand the biolog-

ical functions of all 38 metabolites using pathway analyses to provide

insight into disease-related processes. Our results confirm the previ-

ous associations between 38CSFmetabolites andCSF tau and provide

potential biologicalmechanisms for thedevelopmentof tau tangles and

possible candidates for CSFmetabolite biomarkers or drug targets.

2 METHODS

2.1 Participants

The Wisconsin ADRC’s clinical core cohort started in 2009 and

has well-characterized AD and MCI participants, as well as healthy

older controls (HOC), and the IMPACT cohort of initially cognitively

unimpaired, asymptomatic middle-aged adults.13–15 The replication
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sample for themain analysis included 158 non-HispanicWhite individ-

uals from the IMPACT cohort with cross-sectional CSF samples.

WRAP began recruitment in 2001 as a prospective cohort study

of initially cognitively unimpaired, asymptomatic, middle-aged adults

enriched for a parental history of clinical AD.16 The WRAP cohort

included 130 and 123 non-Hispanic White individuals with longitudi-

nal CSF and plasma samples, respectively. Both the CSF and plasma

cohorts included five sibling pairs, one sibling trio, and three sibling

quartets. The WRAP dataset was used to reproduce and refine the

results from Darst et al.12 using similar statistical models as those for

the IMPACT cohort.

This study was conducted with the approval of the University of

Wisconsin Institutional Review Board, and all participants provided

signed informed consent before participation.

2.2 CSF and plasma sample collection and CSF
biomarkers quantification

Fasting CSF samples for theWisconsin ADRC cohorts andWRAPwere

collected via lumbar puncture13 following the sameprotocol andby the

same group of well-trained individuals.13 Samples were sent together

in two batches to the lab of Drs. Blennow and Zetterberg in Sweden,

where commercially available enzyme-linked immunosorbent assay

(ELISA) methods were used to quantify CSF t-tau, p-tau, and amyloid

beta 1-42 (Aβ42; INNOTEST assays HTAU AG, PHOSPHO-TAU[181P],

and Aβ1-42, respectively; Fujirebio).13 The batch-adjusted predicted

values for CSF biomarkers were used for all analyses.17

In WRAP, fasting blood samples were collected in ethylenedi-

aminetetraacetic acid (EDTA) tubes; the plasmawas pipetted offwithin

1 hour of collection and stored at –80◦C.12 A total of 141 longitu-

dinal samples from 123 individuals in WRAP with plasma metabo-

lites were available for the main analysis. In the Wisconsin ADRC,

blood samples were collected in heparin tubes, which could influence

metabolite values; as such, plasma metabolomics data have not been

generated in Wisconsin ADRC blood samples. Further details of how

plasma and CSF samples were processed are explained in an earlier

study.12

2.3 CSF metabolomic profiling and quality control

CSF and plasma metabolomic analyses and quantification were per-

formed in one batch by Metabolon using an untargeted approach,

based on ultrahigh performance liquid chromatography-tandem mass

spectrometry platform (UPLC-MS/MS).18 Details of the metabolomic

profiling were described in an earlier study.12

Each metabolite value was first scaled so the median was equal to

one across all samples. Missing values were then imputed to half the

lowest level of detection for each biological metabolite and 0.0001

(the lowest value that could be accepted in the analytic software) for

each xenobiotic metabolite. The missing percentage for each of the

38 previously identified CSF metabolites prior to imputation is shown

in Table S1 in supporting information. Metabolites with zero variabil-

ity between individuals, or with an interquartile range of zero, were

excluded (none of the 38CSFmetaboliteswere excluded). Log10 trans-

formation was used to normalize the data. After quality control, the

previously identified 38 metabolites were selected for this investiga-

tion. The distribution of each of the 38 CSF metabolites after impu-

tation and Log 10 transformation is shown in Figure S1 in supporting

information.

2.4 Statistical analysis

2.4.1 Prediction performance of the 38 CSF
metabolites

To replicate the previously reported results in WRAP,12 each metabo-

lite’s association with t-tau and p-tau was tested in the IMPACT cohort

and Bonferroni adjustment was applied to correct for multiple testing.

A meta-analysis was also conducted using results from IMPACT and

WRAP. To replicate the performance of the cluster of 38 CSF metabo-

lites in explaining variation in tau pathology, we used linear regression

models to determine the prediction performance (r2) of CSF t-tau and

p-tau in IMPACT. The base models, which included age, sex, and years

of education, were compared to models that also included the 38 CSF

metabolites. To reproduce the results in WRAP and compare them to

IMPACTusing consistent statisticalmodels, we determined the predic-

tion performance (r2) of the 38 CSF metabolites using linear mixed-

effects regression with random intercepts to account for repeated

measures and sibling relationships. In both IMPACTandWRAP,we ran-

domly split the data into a training (70%) and validation (30%) set and

created plots to compare the observed and predicted values. Finally,

we physically combined theWRAPbaseline samples and IMPACT sam-

ples and re-conducted the analysis to evaluate the explained variance.

Sex-stratified prediction differences were assessed inWRAP by fitting

the mentioned models in males and females separately. The number of

male samples in IMPACT was too small to perform sex-stratified anal-

yses while meeting the degrees of freedom needed by the model. Of

the original 38 CSFmetabolites, 34 were also found in plasma samples

from WRAP and were tested together as predictors for t-tau and p-

tau using linearmixed-effects regressionmodels, as described above. A

sensitivity analysis using only the baseline samples was also conducted

inWRAP for both CSF and plasmametabolites. The statistical analyses

here andbelowwereall conducted inRversion3.6.2. The lme4package

was used.

2.4.2 LASSO selection of important metabolites
and their prediction of AD/MCI versus HOC

To incorporate a practical number of metabolites in the prediction

model of AD/MCI diagnosis versus HOC instead of including all

38 metabolites, the least absolute shrinkage and selection operator

(LASSO)19 was applied to select themost importantmetabolites (those
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TABLE 1 Wisconsin Alzheimer’s Disease Research Center (ADRC) andWisconsin Registry for Alzheimer’s Prevention (WRAP) participant
characteristics

CSF Plasma

Wisconsin ADRC

Participant Characteristics AD (n= 38) MCI (n= 29) HOC (n= 40)

IMPACT

(n= 158)

WRAP

(n= 130a) P*
WRAP

(n= 123)

Female: n (%) 12 (31.6) 8 (27.6) 22 (55.0) 118 (74.7) 85 (65.4) .11 80 (65.0)

Age in years: mean (SD) 71.4 (8.9) 74.2 (8.3) 74.1 (4.8) 57.8 (5.3) 61.5 (6.6) <.001 62.6 (6.5)

Education in years: mean (SD) 14.8 (2.9) 16.3 (2.8) 16.4 (2.9) 16.0 (2.3) 16.1 (2.2) .50 16.1 (2.2)

CSF t-tau: mean (SD) 775.5 (332.9) 573.0 (346.9) 436.8(194.5) 283.1 (144.2) 311.5 (117.7) .03 318.9 (122.7)

CSF p-tau:mean (SD) 74.8 (27.3) 62.4(36.2) 52.9 (19.4) 39.8 (14.5) 41.5 (13.4) .10 42.6 (13.5)

Abbreviations: AD, Alzheimer’s disease; AUC, area under the curve; CSF, cerebrospinal fluid; HOC, healthy older controls; MCI, mild cognitive impairment;

p-tau, phosphorylated tau; SD, standard deviation; t-tau, total tau.

*The P values are based on a two-sample t test conducted between theWisconsin ADRC IMPACT cohort andWRAP (shaded columns).
aThe 130 individuals had 210 longitudinal samples.

with non-zero estimated effects) for CSF t-tau and p-tau in both

IMPACT and WRAP. In WRAP, the average of longitudinal CSF mea-

sures was used in LASSO regression. The tau variances explained by

the selected metabolites were re-evaluated using a model similar to

the one discussed in the previous section in both IMPACT and WRAP.

The ability to enhance the prediction of AD/MCI versus HOC status by

themetabolites selected fromLASSOwas evaluated in an independent

set of participants from the Wisconsin ADRC using logistic regression

and an area under the curve (AUC) score. To determine prediction abil-

ity of the selectedmetabolites beyond demographic factors and estab-

lished biomarkers, base models including age, sex, years of education,

apolipoprotein E (APOE) ε4 count, t-tau, p-tau, and Aβ42 were com-

pared to the base model replacing t-tau and p-tau with the selected

metabolites andalso thebasemodel plus the selectedmetabolites from

LASSO. The analysis here used the “glmnet” package in R.

2.4.3 Biological relevance of the 38 CSF
metabolites

An exploratory factor analysis was conducted to determine whether

subsets of metabolites clustered together in latent factors associated

with t-tau and p-tau. The factor analysis was performed in IMPACT

and WRAP using the “psych” package in R. Metabolites with a load-

ing of ≥0.420 in one particular factor and lower loadings for the rest

of the factors were considered members of that particular factor.

Potential functional pathways of the 38 metabolites were identified

from the Homo sapiens Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway by conducting pathway analyses using the web-

based software Metabo-analyst,21 inputting the metabolites’ human

metabolome database (HMDB) IDs, and using the default hypergeo-

metric test and the relative-betweenness centrality,which is ameasure

of centrality in a graph based on the shortest paths that pass through

the vertex. Pathways were considered important if the false discovery

rate was≤0.05 or the impact was≥0.1.

3 RESULTS

3.1 Participant characteristics

Characteristics of the participants can be found in Table 1. Among 158

Wisconsin ADRC IMPACT participants and 130 WRAP participants

who had CSF metabolite data available, females comprised 74.7% of

IMPACT participants and 65.4% of participants in WRAP. The mean

baseline age was significantly younger in IMPACT (57.8 years) com-

pared to WRAP (61.5 years). The mean years of education was similar

(16.0 and 16.1 years in IMPACT and WRAP, respectively). Mean CSF

t-tau was significantly lower in IMPACT (283.1) compared to WRAP

(311.5). The correlation between t-tau and p-tauwas≈0.90 in IMPACT

andWRAP.The characteristics of eachadditional subcohort of theWis-

consin ADRC and of the 123WRAP participants in the plasma predic-

tion analysis can also be found in Table 1.

3.2 Prediction performance

Each of the 38 CSF metabolites was significantly associated with t-tau

and p-tau in IMPACT and the direction of the effect was the same as

in WRAP (Table S2 in supporting information). Meta-analysis results

are shown in Table S3 in supporting information. All metabolites were

significantly associated with t-tau and p-tau except erythritol. Base

models only explained ≈10% of the variance in t-tau and p-tau in both

IMPACT and WRAP (Table 2). In IMPACT, the statistical model includ-

ing the 38 CSF metabolites and demographics together explained

70.3% of the variance in t-tau and 75.7% of the variance in p-tau

values. These results were similar to those calculated in WRAP, in

which the model including the 38 CSF metabolites and demographics

explained 62.4% and 65.1% of the variance in t-tau and p-tau values,

respectively. Similarly, in the combined dataset, the 38 CSF metabo-

lites explained 66.1% and 72.3% of the variance in t-tau and p-tau,

respectively. The results of the same analysis but only using baseline
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TABLE 2 Prediction performance (r2) of eachmodel in IMPACT andWisconsin Registry for Alzheimer’s Prevention (WRAP)

IMPACT WRAP

T-tau P-tau T-tau P-tau

Null models: demographicsa only 0.083 0.106 0.085 0.087

Enhancedmodels: demographics and 38CSFmetabolites

Overall 0.703 0.757 0.624 0.651

Female 0.787 0.791 0.591 0.640

Male NAb NAb 0.794 0.804

Demographics and 7 LASSO selected CSFmetabolites 0.594 0.692 0.585 0.615

Demographics and 34 plasmametabolites NAb NAb 0.269 0.301

Abbreviations: CSF, cerebrospinal fluid; LASSO, least absolute shrinkage and selection operator; p-tau, phosphorylated tau; t-tau, total tau.
aDemographics are age, sex, and years of education.
bThe sample size for males was too small to perform the analysis in IMPACT.

samples inWRAP are shown in Table S4 in supporting information. Fig-

ure S2 in supporting information shows plots comparing the observed

and predicted values for t-tau and p-tau in both IMPACT andWRAP. In

WRAP, these metabolites explained more of the variance in the t-tau

and p-tau in males (r2= 0.749 and 0.804) than in females (r2= 0.591

and 0.640; Table 2). We did not have enough male participants to fit

the sex-stratified model in IMPACT; however, while the female-only

r2 was lower than the overall r2 in WRAP, this trend was not seen in

IMPACT. In WRAP, 34 of 38 metabolites present in plasma explained

26.9% and 30.1% of the variance in CSF t-tau and p-tau, respectively

(Table 2), which is relatively low compared to CSF metabolites. We

also examined the same 34 CSF metabolites’ prediction ability and

confirmed that the lower r2 values for the 34 plasmametabolites were

not due to the absence of the four metabolites (Table S4).

3.3 LASSO results

LASSO results for t-tau and p-tau in both IMPACT and WRAP are

shown in Table 3. Eightmetabolites with non-zero coefficients (ranging

from33.25 to 202.10)were chosen in IMPACT, and twelvemetabolites

(coefficients ranging from –112.48 to 333.57) were selected for t-tau

inWRAP. Among the selected metabolites, five were consistent across

IMPACT and WRAP (N-acetylneuraminate, C-glycosyl tryptophan,

X-10457, X-24228, and 1-palmitoyl-GPC[16:0]). Eleven metabolites

in IMPACT and twelve metabolites in WRAP with non-zero coeffi-

cients (ranging from 1.07 to 28.80 in IMPACT and –4.06 to 30.80 in

WRAP) were selected for p-tau, with seven metabolites overlapping

(N-acetylneuraminate, C-glycosyl tryptophan, X-10457, X-24228,

1-oleoyl-GPC[18:1], 1-palmitoyl-GPC[16:0], and 1-myristoyl-2-

palmitoyl-GPC[14:0/16:0]), which included the five metabolites

overlapping in the two t-tau models. These seven metabolites along

with demographics explained about 59% and 69% of the variance in t-

tau and p-tau, respectively, in IMPACT and 59% and 62%, respectively,

inWRAP (Table 2).

When predicting AD versus HOC and MCI versus HOC, the base

models, including age, sex, years of education, APOE ε4 count, t-tau,

p-tau, and Aβ42, achieved AUC scores of 0.92 and 0.78, respectively.

Replacing t-tau and p-tau with the seven metabolites selected by

LASSO that overlapped across IMPACT andWRAP for t-tau and/or p-

tau, achieved AUC scores of 0.94 and 0.82. The base model plus the

seven metabolites collectively improved the prediction ability of AD

versus HOC (AUC score increased from 0.92 to 0.97) and of MCI ver-

sus HOC (AUC score increased from 0.78 to 0.93; Figure 1A,B). The

comparisons of results from the basemodel plus seven LASSO selected

metabolites to the base model with seven randomly selected metabo-

lites from 38 metabolites and seven randomly selected metabolites

from all CSF metabolites with tau outcomes are shown in Figure S3 in

supporting information.

3.4 Biological relevance of the 38 metabolites

The biochemical names, subpathways, and superpathways of the 38

metabolites can be found in Table S5 in supporting information, which

also shows the loadings of each metabolite for three latent factors

produced through exploratory factor analysis. These factors included

the exact same metabolites and similar loadings for each in both

IMPACT and WRAP and explained about 60% of the variance in the

38metabolites. Factor 1 included 25metabolites in the following path-

ways: amino acids, nucleotides, carbohydrates, cofactors and vitamins,

energy, xenobiotics, and unknowns (no confirmed biochemical names).

Factor 2 was composed of eleven lipids. Two lysophospholipids con-

tributed to factor 3 and they were selected by LASSO for p-tau in both

IMPACT andWRAP.

Among the 29 known metabolites, 26 had HMDB IDs and 23

of these were present in the MetaboAnalyst database. In pathway

analyses, these 23 metabolites were enriched in two KEGG pathways

(Figure 2 and Table 4): (1) pentose and glucuronate interconversions

and (2) glycerophospholipid (GP) metabolism. Three metabolites from

Factor 1, arabinose, arabitol/xylitol, and gulonate, were enriched

in pentose and glucuronate interconversions. Two metabolites, 1-

palmitoyl-2-palmitoleoyl-GPC(16:0/16:1) and 1-oleoyl-GPC(18:1)

from factors 2 and 3, respectively, were enriched in GPmetabolism.
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(A) ROC curves for AD vs. HOC
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(B) ROC curves for MCI vs. HOC
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F IGURE 1 Receiver operating characteristic
(ROC) curves and area under the curve (AUC)
scores of predictions by six models in the
Wisconsin Alzheimer’s Disease Research Center
(ADRC; A) Alzheimer’s disease (AD) versus
healthy older controls (HOC), (B) mild cognitive
impairment (MCI) versus HOC. Basemodel: age,
sex, years of education, apolipoprotein E ε4 count,
total tau (t-tau), phosphorylated tau (p-tau), and
amyloid beta 42; basemodel replacing t-tau and
p-tau with the seven selectedmetabolites from
least absolute shrinkage and selection operator
(LASSO); and basemodel plus the seven selected
metabolites from LASSO
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TABLE 3 Least absolute shrinkage and selection operator (LASSO) results for cerebrospinal fluid (CSF) t-tau and p-tau in IMPACT and
Wisconsin Registry for Alzheimer’s Prevention (WRAP)

IMPACT WRAP

T-tau

Biochemical name Coefficient Biochemical name Coefficient

X-24228 202.10 N-acetylneuraminate 333.57

N-acetylneuraminate 188.68 C-glycosyl tryptophan 264.20

Beta-citrylglutamate 151.01 X-12906 97.42

C-glycosyl tryptophan 92.25 1-oleoyl-GPC (18:1) 69.00

N-acetylthreonine 78.41 X-10457 62.67

1-palmitoyl-GPC (16:0) 72.78 N6-succinyladenosine 50.65

X-10457 42.70 X-24228 36.65

X-24699 33.25 X-23739 28.95

1-palmitoyl-GPC (16:0) 1.38

1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) 0.21

X-18887 –3.56

Ribonate –112.48

P-tau

C-glycosyl tryptophan 28.80 N-acetylneuraminate 30.80

N-acetylneuraminate 24.98 C-glycosyl tryptophan 30.55

Beta-citrylglutamate 15.71 X-10457 9.80

X-24228 7.37 N6-succinyladenosine 7.41

X-10457 5.47 X-24228 5.59

1-palmitoyl-GPC (16:0) 4.26 X-12906 3.66

Cholesterol 2.52 Sphingomyelin (d18:1/14:0, d16:1/16:0) 3.05

1-oleoyl-GPC (18:1) 2.44 X-24699 3.04

X-24329 1.25 1-oleoyl-GPC (18:1) 2.33

Gulonate 1.13 1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 0.88

1-myristoyl-2-palmitoyl-GPC (14:0/16:0) 1.07 X-18887 -2.50

Ribonate -4.06

Note:Metabolites shaded in light gray with bold font are consistent across IMPACT andWRAP.

Abbreviations: p-tau, phosphorylated tau; t-tau, total tau.

4 DISCUSSION

Using a cross-sectional sample from the Wisconsin ADRC IMPACT

cohort, we replicated previous findings of 38 CSF metabolites associ-

ated with t-tau and p-tau inWRAP.12 Not only was each of the 38 CSF

metabolites significantly associatedwith both tau outcomes after Bon-

ferroni correction, but the high amount of variance in tau explained by

this cluster of 38 CSFmetabolites was confirmed in IMPACT.

Among these metabolites, there are thirteen lipids, seven amino

acids, five carbohydrates, one nucleotide, one energy metabolite,

one cofactor and vitamin metabolite, one xenobiotic, and nine

unknown metabolites. Some of these metabolites, such as 1,2-

dipalmitoyl-GPC(16:0/16:0) and stearoyl sphingomyelin(d18:1/18:0),

were previously reported to be associated with AD diagnosis or AD

pathogenesis.22,23 Orešič et al. found that serum 1,2-dipalmitoyl-

GPC(16:0/16:0), also called PC(16:0/16:0), was one of three metabo-

lites considered to be predictive markers of AD progression in indi-

viduals with MCI.22 CSF stearoyl sphingomyelin(d18:1/18:0), also

called SM(d18:1/18:0), distinguished clinical AD from controls, with

an accuracy of 70% and was significantly increased in patients dis-

playing pathological levels of Aβ42, t-tau, and p-tau,23 supporting that

this molecule changes in patients with A/T/N pathology. Addition-

ally, the N-acetylamino acids, N-acetylvaline, N-acetylthreonine, N-

acetylserine, and N-acetyl-isoputreanine, were identified in our study.

N-acetylthreonine and N-acetylserine are the downstream metabo-

lites of the cleavage process initiated by lysosomal protease tripep-

tidyl peptidase 1 (TPP1),24 and previous studies25,26 suggested that

increased levels of TPP1 enhance fibrillar Aβ degradation. In support

of this, a secondary analysis in our study found that N-acetylserine

was significantly associated with Aβ42 (beta = 480.38, P = .002),
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TABLE 4 Pathway analysis results for the 38 cerebrospinal fluid (CSF) metabolites

Pathway enrichment Pathway impact

KEGG pathway

Total #

metabolites in

KEGG pathway

#Metabolites

identified in

present study Raw p -Log (p) FDR Impact

Pentose and glucuronate interconversions 18 3 2E-04 8.80 0.01 0.25

Glycerophospholipidmetabolism 36 2 0.02 3.86 0.88 0.11

Linoleic acid metabolism 5 1 0.03 3.45 0.89 0

Ascorbate and aldaratemetabolism 8 1 0.05 2.98 1 0

alpha-linolenic acidmetabolism 13 1 0.08 2.51 1 0

Sphingolipidmetabolism 21 1 0.13 2.06 1 0

Arachidonic acidmetabolism 36 1 0.21 1.56 1 0

Steroid biosynthesis 42 1 0.24 1.42 1 0.03

Primary bile acid biosynthesis 46 1 0.26 1.34 1 0.05

Steroid hormone biosynthesis 85 1 0.43 0.84 1 0.005

Notes: Raw p is the original P value calculated from the enrichment analysis; FDR p is the P value adjusted using false discovery rate; Impact is the pathway

impact value calculated from the pathway topology analysis. The first two rows are considered important.

Abbreviations: FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Pathway Impact

-lo
g(

p)

0.250.200.150.100.050.00

2
4

6
8

Glycerophospholipid
metabolism

Pentose and glucuronate 
interconversions

F IGURE 2 Pathway analysis results for 23 cerebrospinal fluid
(CSF) metabolites. The x-axis represents the pathway impact, and
y-axis represents the pathway enrichment. Larger sizes and darker
colors represent higher pathway impact and enrichment, respectively

providing evidence that this CSF metabolite may be involved in brain

amyloid pathology.

From the 38 metabolites, 7 were selected by LASSO in both

IMPACT and WRAP: N-acetylneuraminate, C-glycosyl tryptophan,

1-palmitoyl-GPC(16:0), 1-oleoyl-GPC(18:1), 1-myristoyl-2-palmitoyl-

GPC(14:0/16:0), and two unknown metabolites (X-10457 and X-

24228). These improved the prediction of AD versus HOC by ≈5%

and MCI versus HOC by 15% compared to a model that included the

well-established AD risk factors of age, sex, years of education, APOE

ε4 count, t-tau, p-tau, and Aβ42. A recent study in a Japanese cohort

found that CSF N-acetylneuraminate was significantly higher in AD

patients, compared to the idiopathic normal pressure hydrocephalus,

and had a positive correlation with CSF p-tau (r= 0.55).27 In our study,

CSF N-acetylneuraminate was positively associated with both t-tau

and p-tau. C-glycosyl tryptophan, a sugar-loaded amino acid, has been

reported to be strongly associated with aging, defined by chronologi-

cal age (beta = 2.47, P = 1.3 × 10−23), in a human blood metabolome-

wide association study.28 In our study, CSF C-glycosyl tryptophan

was positively associated with t-tau and p-tau. Two lipids 1-palmitoyl-

GPC(16:0) (also called LysoPC[16:0/0:0]) and 1-myristoyl-2-palmitoyl-

GPC(14:0/16:0; also called PC[14:0/16:0]), belong to the class of

lysophospholipid (LysoPCs) and phosphatidylcholines (PCs), respec-

tively. Previous studies have shown that numerous plasma/serum

metabolites from the LysoPC and PC classes were significantly asso-

ciated with MCI and AD dementia or able to discriminate MCI and

AD dementia cases from controls.9,29–34 In a randomized crossover

trial that treated mild to moderate AD patients with medium-chain

triglycerides, 1-palmitoyl-GPC(16:0) levels increased along with an

improvement in cognition.34 These seven LASSO-selectedmetabolites

improved the prediction of AD andMCI status, suggesting theymay be

useful biomarkers for clinical AD andMCI diagnosis.

Another interesting discovery from the LASSO results is that,

while five metabolites were overlapping in IMPACT and WRAP for

both t-tau and p-tau, two metabolites,1-oleoyl-GPC(18:1; also called

LysoP C[18:1(9Z)/0:0]) and 1-myristoyl-2-palmitoyl-GPC(14:0/16:0;

also called PC[14:0/16:0]) were selected only for p-tau, not t-tau.

Because p-tau is more specific to AD-related tau pathology than t-tau,

thesemetabolitesmightprovide insight into thepathological processes

involved in tau tangle formation in AD.
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When using the seven metabolites to predict AD/MCI versus HOC,

theAUCscores fromboth thebasemodel andbasemodel plusmetabo-

lites were higher for AD than for MCI. However, a greater improve-

ment in prediction accuracy for MCI versus HOC (15%) was achieved

than AD versus HOC (5%). One possible reason could be that the

38 CSF metabolites were originally identified from the WRAP cohort,

whose participants were relatively young and have not been diag-

nosed with AD yet. Another explanation could be that the base model,

which included demographics, APOE ε4 count, and three core AD CSF

biomarkers, already achieved a very high accuracy for predicting AD

versus HOC and had little room for improvement.

InWRAP,wewereable to test thepredictionof34of the38metabo-

lites that were found in plasma. We found that these 34 metabolites

collectively did not explain much variation in CSF concentrations of t-

tau and p-tau (r2 between 0.286 and 0.303). This was not due to the

absence of the four metabolites, because the r2 of the 34 metabo-

lites in the CSF (0.621 to 0.641) was close to that with all 38 metabo-

lites (0.624 to0.651) inWRAP.Moreover, the correlations between the

same 34 metabolites measured in both CSF and plasma are relatively

low (–0.13 to 0.30;12 Figure S4 in supporting information). We previ-

ously proposed that this low correlation could be attributed to these

metabolites not being able to cross the blood brain barrier (BBB).35 For

example, cholesterol metabolism in the brain relies on its own cells to

produce cholesterol, and the transport of cholesterol from peripheral

circulation into the brain is prevented by the BBB.36,37 In this situa-

tion, the concentrations and functions of metabolites like cholesterol

are different across the BBB. Thus, testing for these metabolites in a

more readily available body fluid, like blood, does not appear to be a

viable option.

The factor analysis results suggest that the 38 metabolites are

associated with tau through three main clusters: (1) the combination

of select amino acids, nucleotides, carbohydrates, cofactors and vita-

mins, energy, xenobiotics, and unknownmetabolites; (2) phosphatidyl-

cholines and sphingolipid metabolism; and (3) lysophospholipids. Five

metabolites from these factors were enriched in (1) pentose and glu-

curonate interconversions and (2) glycerophospholipid metabolism

from the pathway analysis. The pentose and glucuronate interconver-

sion pathway was suggested from genomics and metabolomics studies

to be involved in AD.38–40 A urinary metabolomics study of APP/PS1

transgenic mice of AD and a hippocampal metabolomics study of

CRND8 mice also identified this pathway.41,42 Other studies have

shown that brain glucose dysregulation and pentose-related activities

are associated with AD pathology.43–46 Thus, our results provide fur-

ther potential links between molecules in pentose and glucuronate

metabolism, especially the three CSF metabolites arabinose, xylitol,

and gulonate, and the tau pathological process of AD.

The brain is the most cholesterol-rich organ, containing glyc-

erophospholipids, cholesterol, sphingolipids, etc.47 The neural mem-

branes are also composed of these lipids and the evidence suggests

that glycerophospholipids and glycerophospholipid metabolism may

associate with neural membrane composition alterations, glycerolipid-

derived lipid-mediated oxidative stress, and neuroinflammation.9,48

For example, levels of glycerophospholipids were decreased in

brain autopsy samples from AD patients compared to age-matched

controls.49 In another study, increased glycerophospholipid levels

were associated with increased activities of lipolytic enzymes and

elevated concentrations of phospholipid degradation metabolites.50

In our analysis, the two metabolites 1-palmitoyl-2-palmitoleoyl-

GPC(16:0/16:1) and 1-oleoyl-GPC(18:1) from factors 2 and 3 were

in a feedback loop and their levels were influenced by the genes

LCAT, PLA2G4B, and LPCAT (Figure S5 in supporting information).

Previous studies have suggested that LCAT and LPCAT are related to

AD.51,52 Thus, by connecting glycerophospholipids, especially these

two metabolites with t-tau and p-tau, we provide further evidence for

their connections with AD pathogenesis.

Our sample sizeswere relatively small for both IMPACT andWRAP;

however, the 38 CSF metabolites’ associations with CSF t-tau and p-

tau levels identified previously12 were replicated in the independent

IMPACT data, strengthening our confidence that these 38 metabo-

lites are important for tau pathology. However, further research is nec-

essary to understand whether a causal relationship exists between

these CSF metabolites and tau pathology. One limitation of this study

is that both IMPACT and WRAP participants are predominantly non-

Hispanic White, so the findings of this study may not be generaliz-

able to other races/ethnicities. Another limitation is that most of the

38 metabolites are highly correlated with each other. LASSO selected

seven metabolites that have non-zero effects on tau, but the resulting

metabolites are still correlated with each other (Figure S6 in support-

ing information; range of 0.40 to 0.96). A more sophisticated approach

that can further remove non-independent metabolites is needed for

clinical application. A third limitation is that in our pathway analysis,

only three or two metabolites were included in the enriched pathways

(pentose and glucuronate interconversions and glycerophospholipid

metabolism, respectively). Future researchwill benecessary to confirm

these results.

In summary, we aimed to replicate earlier findings of 38 CSF

metabolites’ correlation with tau and expand the biological knowledge

of them to better understand their roles in AD pathogenesis. Thirty-

eight CSF metabolites individually associated with two tau outcomes

significantly and, together, explained a large amount of variance in tau.

A subset of these metabolites, selected by LASSO, improved the pre-

diction accuracy of AD/MCI versus HOC over a model that included

established predictors of AD. Two promising metabolic pathways, pen-

tose and glucuronate interconversions metabolism and glycerophos-

pholipidmetabolism,were identified in this study andhavebeen shown

to be related to AD in previous literature. IMPACT and WRAP are

ongoing longitudinal studies that are continuing to collect plasma and

CSF from study participants, and additional data will be generated in

the future. These data may help fill in gaps regarding the mechanisms

linking metabolites and AD, improve the establishment of CSF-based

metabolite biomarkers, and identify novel drug targets.
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