2 research outputs found

    A LOFAR prompt search for radio emission accompanying X-ray flares in GRB 210112A

    No full text
    The composition of relativistic gamma-ray burst (GRB) jets and their emission mechanisms are still debated, and they could be matter or magnetically dominated. One way to distinguish these mechanisms arises because a Poynting flux dominated jet may produce low-frequency radio emission during the energetic prompt phase, through magnetic reconnection at the shock front. We present a search for radio emission coincident with three GRB X-ray flares with the LOw Frequency ARray (LOFAR), in a rapid response mode follow-up of long GRB 210112A (at z ∼ 2) with a 2 h duration, where our observations began 511 s after the initial Swift-BAT trigger. Using time-sliced imaging at 120–168 MHz, we obtain upper limits at 3σ confidence of 42 mJy averaging over 320 s snapshot images, and 87 mJy averaging over 60 s snapshot images. LOFAR’s fast response time means that all three potential radio counterparts to X-ray flares are observable after accounting for dispersion at the estimated source redshift. Furthermore, the radio pulse in the magnetic wind model was expected to be detectable at our observing frequency and flux density limits which allows us to disfavour a region of parameter space for this GRB. However, we note that stricter constraints on redshift and the fraction of energy in the magnetic field are required to further test jet characteristics across the GRB population.</p

    A multi-wavelength analysis of a collection of short-duration GRBs observed between 2012-2015

    Full text link
    We investigate the prompt emission and the afterglow properties of short duration gamma-ray burst (sGRB) 130603B and another eight sGRB events during 2012-2015, observed by several multi-wavelength facilities including the GTC 10.4m telescope. Prompt emission high energy data of the events were obtained by INTEGRAL/SPI/ACS, Swift/BAT and Fermi/GBM satellites. The prompt emission data by INTEGRAL in the energy range of 0.1-10 MeV for sGRB 130603B, sGRB 140606A, sGRB 140930B, sGRB 141212A and sGRB 151228A do not show any signature of the extended emission or precursor activity and their spectral and temporal properties are similar to those seen in case of other short bursts. For sGRB130603B, our new afterglow photometric data constraints the pre jet-break temporal decay due to denser temporal coverage. For sGRB 130603B, the afterglow light curve, containing both our new as well as previously published photometric data is broadly consistent with the ISM afterglow model. Modeling of the host galaxies of sGRB 130603B and sGRB 141212A using the LePHARE software supports a scenario in which the environment of the burst is undergoing moderate star formation activity. From the inclusion of our late-time data for 8 other sGRBs we are able to; place tight constraints on the non-detection of the afterglow, host galaxy or any underlying kilonova emission. Our late-time afterglow observations of the sGRB 170817A/GW170817 are also discussed and compared with the sub-set of sGRBs
    corecore