11 research outputs found
Pathophysiological mechanisms of extraesophageal reflux in otolaryngeal disorders
Schreiber S, Garten D, Sudhoff H. Pathophysiological mechanisms of extraesophageal reflux in otolaryngeal disorders. European Archives of Oto-Rhino-Laryngology. 2009;266(1):17-24
Dermatological applications of EPR : skin-deep or in-depth?
The skin is often referred to as the biggest uniform human body organ, and also as the "brain outside", exposed not only, like the lung epithelium, to the atmospheric air but to other constituents of the open environment including changeable temperature and solar irradiation. The importance of what happens in the skin is therefore not to be overestimated for general condition of the whole organism. Techniques of electron paramagnetic resonance (EPR; called also electron spin resonance, ESR) spectroscopy and imaging belong to the important experimental and diagnostic approaches in dermatology, but the size and shape of skin often make technical problems. The present chapter will cover the basic and clinical applications of EPR to study the skin (including skin tumors) and hair. As the numerous available review papers usually describe the specificity of the EPR-related methods for dermatologists, we decided to cover also some basic aspects of dermatology, to make the chapter more useful also to the specialists in EPR theory and instrumentation. A particular emphasis will be put on the most recent discoveries and innovations, to show that the apparently purely dermatological aspects of such investigations reveal also deeper, systemic implications
A clinical trial of progesterone for severe traumatic brain injury.
BACKGROUND: Progesterone has been associated with robust positive effects in animal models of traumatic brain injury (TBI) and with clinical benefits in two phase 2 randomized, controlled trials. We investigated the efficacy and safety of progesterone in a large, prospective, phase 3 randomized clinical trial.
METHODS: We conducted a multinational placebo-controlled trial, in which 1195 patients, 16 to 70 years of age, with severe TBI (Glasgow Coma Scale score, 648 [on a scale of 3 to 15, with lower scores indicating a reduced level of consciousness] and at least one reactive pupil) were randomly assigned to receive progesterone or placebo. Dosing began within 8 hours after injury and continued for 120 hours. The primary efficacy end point was the Glasgow Outcome Scale score at 6 months after the injury.
RESULTS: Proportional-odds analysis with covariate adjustment showed no treatment effect of progesterone as compared with placebo (odds ratio, 0.96; confidence interval, 0.77 to 1.18). The proportion of patients with a favorable outcome on the Glasgow Outcome Scale (good recovery or moderate disability) was 50.4% with progesterone, as compared with 50.5% with placebo. Mortality was similar in the two groups. No relevant safety differences were noted between progesterone and placebo.
CONCLUSIONS: Primary and secondary efficacy analyses showed no clinical benefit of progesterone in patients with severe TBI. These data stand in contrast to the robust preclinical data and results of early single-center trials that provided the impetus to initiate phase 3 trials. (Funded by BHR Pharma; SYNAPSE ClinicalTrials.gov number, NCT01143064.)