483 research outputs found
Breed-Specific Hematological Phenotypes in the Dog: A Natural Resource for the Genetic Dissection of Hematological Parameters in a Mammalian Species
Remarkably little has been published on hematological phenotypes of the domestic dog, the most polymorphic species on the planet. Information on the signalment and complete blood cell count of all dogs with normal red and white blood cell parameters judged by existing reference intervals was extracted from a veterinary database. Normal hematological profiles were available for 6046 dogs, 5447 of which also had machine platelet concentrations within the reference interval. Seventy-five pure breeds plus a mixed breed control group were represented by 10 or more dogs. All measured parameters except mean corpuscular hemoglobin concentration (MCHC) varied with age. Concentrations of white blood cells (WBCs), neutrophils, monocytes, lymphocytes, eosinophils and platelets, but not red blood cell parameters, all varied with sex. Neutering status had an impact on hemoglobin concentration, mean corpuscular hemoglobin (MCH), MCHC, and concentrations of WBCs, neutrophils, monocytes, lymphocytes and platelets. Principal component analysis of hematological data revealed 37 pure breeds with distinctive phenotypes. Furthermore, all hematological parameters except MCHC showed significant differences between specific individual breeds and the mixed breed group. Twenty-nine breeds had distinctive phenotypes when assessed in this way, of which 19 had already been identified by principal component analysis. Tentative breed-specific reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis. This study represents the first large-scale analysis of hematological phenotypes in the dog and underlines the important potential of this species in the elucidation of genetic determinants of hematological traits, triangulating phenotype, breed and genetic predisposition
A study of nitrogen incorporation in pyramidal site-controlled quantum dots
We present the results of a study of nitrogen incorporation in metalorganic-vapour-phase epitaxy-grown site-controlled quantum dots (QDs). We report for the first time on a significant incorporation (approximately 0.3%), producing a noteworthy red shift (at least 50 meV) in some of our samples. Depending on the level of nitrogen incorporation/exposure, strong modifications of the optical features are found (variable distribution of the emission homogeneity, fine-structure splitting, few-particle effects). We discuss our results, especially in relation to a specific reproducible sample which has noticeable features: the usual pattern of the excitonic transitions is altered and the fine-structure splitting is suppressed to vanishing values. Distinctively, nitrogen incorporation can be achieved without detriment to the optical quality, as confirmed by narrow linewidths and photon correlation spectroscopy
Differential pain response at local and remote muscle sites following aerobic cycling exercise at mild and moderate intensity
Physical exercise has been shown to inhibit experimental pain response in the post-exercise period. Modulation of the pain system may be differentiated between muscle sites engaging in contractile activity. The purpose of this study was to assess the pain response at remote and local muscle sites following aerobic exercise at different work intensities. Participants included 10 healthy and physically active males (mean age ± SD, 21.2 ± 3.4). Somatic pressure pain threshold (PPT) at the rectus femoris (local) and brachioradialis (remote) muscle site was measured at before (Pre), 5 min after (Post1), and 15 min after (Post2) aerobic cycling exercise at 70 and 30 % of peak oxygen uptake (VO(2peak)) performed on different occasions in a counterbalanced order, separated by minimum of 3 days interval. Repeated measures ANOVA for PPT reveals significant main effect for time (f = 3.581, p = 0.049, observed power = 0.588) and muscle site (f = 17.931, p = 0.002, observed power = 0.963). There was a significant interaction shown for exercise intensity by time (f = 11.390, p = 0.012, observed power = 0.790). PPT at rectus femoris following cycling exercise at 70 % of VO(2peak) reveals a significant increase between Pre-Post1 (p = 0.040). PPT for rectus femoris following cycling exercise at 30 % of VO(2peak) revealed a significant decrease between Pre-Post1 (p = 0.026) and Pre-Post2 (p = 0.008). The PPT for brachioradialis following cycling exercise at 30 % of VO(2peak) revealed a significant decrease between Pre-Post1 (p = 0.011) and Pre-Post2 (p = 0.005). These results show that aerobic exercise increases PPT locally at the exercise muscle site following exercise at 70 % of VO(2peak) but reduces PPT following exercise at 30 % of VO(2peak)
The FPR2-induced rise in cytosolic calcium in human neutrophils relies on an emptying of intracellular calcium stores and is inhibited by a gelsolin-derived PIP2-binding peptide
<p>Abstract</p> <p>Background</p> <p>The molecular basis for neutrophil recognition of chemotactic peptides is their binding to specific G-protein-coupled cell surface receptors (GPCRs). Human neutrophils express two pattern recognition GPCRs, FPR1 and FPR2, which belong to the family of formyl peptide receptors. The high degree of homology between these two receptors suggests that they share many functional and signal transduction properties, although they exhibit some differences with respect to signaling. The aims of this study were to determine whether FPR2 triggers a unique signal that allows direct influx of extracellular calcium without the emptying of intracellular calcium stores, and whether the gelsolin-derived PIP<sub>2</sub>-binding peptide, PBP10, selectively inhibits FPR2-mediated transient rise in intracellular Ca<sup>2+</sup>.</p> <p>Results</p> <p>The transient rise in intracellular Ca<sup>2+ </sup>induced by agonists for FPR1 or FPR2 in human neutrophils occurred also in the presence of a chelator of Ca<sup>2+ </sup>(EGTA). PBP10 inhibited not only FPR2-induced oxidase activity, but also the transient rise in intracellular Ca<sup>2+</sup>.</p> <p>Conclusions</p> <p>Ca<sup>2+ </sup>signaling mediated <it>via </it>FPR2 follows the same route as FPR1, which involves initial emptying of the intracellular stores. PBP10 inhibits selectively the signals generated by FPR2, both with respect to NADPH-oxidase activity and the transient rise in intracellular Ca<sup>2+ </sup>induced by agonist exposure.</p
MUC-1 gene is associated with prostate cancer death: a 20-year follow-up of a population-based study in Sweden
Anti-adhesion mucins have proven to play an important part in the biology of several types of cancer. Therefore, we test the hypothesis that altered expression of MUC-1 is associated with prostate cancer progression. We retrieved archival tumour tissue from a population-based cohort of 195 men with localised prostate cancer (T1a-b, Nx, M0) that has been followed for up to 20 years with watchful waiting. Semi-automated, quantitative immunohistochemistry was undertaken to evaluate MUC-1 expression. We modelled prostate cancer-specific death as a function of MUC-1 levels accounting for age, Gleason grade and tumour extent, and calculated age-adjusted and multivariate adjusted hazard ratios (HR). Men that had tumours with an MUC-intensity lower or higher than normal tissue had a higher risk of dying in prostate cancer, independent of tumour extent and Gleason score (HR 5.1 and 4.5, respectively). Adjustment for Gleason grade and tumour stage did not alter the results. Men with a Gleason score â©Ÿ7 and MUC-1 deviating from the normal had a 17 (RR=17.1 95% confidence interval=2.3â128) times higher risk to die in prostate cancer compared with men with Gleason score <7 and normal MUC-1 intensity. In summary, our data show that MUC-1 is an independent prognostic marker for prostate cancer death
High-temperature performance of ferritic steels in fireside corrosion regimes: temperature and deposits
The paper reports high temperature resistance of ferritic steels in fireside corrosion regime in terms of temperature and deposits aggressiveness. Four candidate power plant steels: 15Mo3, T22, T23 and T91 were exposed under simulated air-fired combustion environment for 1000 h. The tests were conducted at 600, 650 and 700 °C according to deposit-recoat test method. Post-exposed samples were examined via dimensional metrology (the main route to quantify metal loss), and mass change data were recorded to perform the study of kinetic behavior at elevated temperatures. Microstructural investigations using ESEM-EDX were performed in order to investigate corrosion degradation and thickness of the scales. The ranking of the steels from most to the least damage was 15Mo3 > T22 > T23 > T91 in all three temperatures. The highest rate of corrosion in all temperatures occurred under the screening deposit
Unraveling the mysteries of dog evolution
The increased battery of molecular markers, derived from comparative genomics, is aiding our understanding of the genetics of domestication. The recent BMC Biology article pertaining to the evolution of small size in dogs is an example of how such methods can be used to study the origin and diversification of the domestic dog. We are still challenged, however, to appreciate the genetic mechanisms responsible for the phenotypic diversity seen in 'our best friend'
Metabolic Factors Limiting Performance in Marathon Runners
Each year in the past three decades has seen hundreds of thousands of runners register to run a major marathon. Of those who attempt to race over the marathon distance of 26 miles and 385 yards (42.195 kilometers), more than two-fifths experience severe and performance-limiting depletion of physiologic carbohydrate reserves (a phenomenon known as âhitting the wallâ), and thousands drop out before reaching the finish lines (approximately 1â2% of those who start). Analyses of endurance physiology have often either used coarse approximations to suggest that human glycogen reserves are insufficient to fuel a marathon (making âhitting the wallâ seem inevitable), or implied that maximal glycogen loading is required in order to complete a marathon without âhitting the wall.â The present computational study demonstrates that the energetic constraints on endurance runners are more subtle, and depend on several physiologic variables including the muscle mass distribution, liver and muscle glycogen densities, and running speed (exercise intensity as a fraction of aerobic capacity) of individual runners, in personalized but nevertheless quantifiable and predictable ways. The analytic approach presented here is used to estimate the distance at which runners will exhaust their glycogen stores as a function of running intensity. In so doing it also provides a basis for guidelines ensuring the safety and optimizing the performance of endurance runners, both by setting personally appropriate paces and by prescribing midrace fueling requirements for avoiding âthe wall.â The present analysis also sheds physiologically principled light on important standards in marathon running that until now have remained empirically defined: The qualifying times for the Boston Marathon
- âŠ