141 research outputs found

    B=5 Skyrmion as a two-cluster system

    Get PDF
    The classical B=5 Skyrmion can be approximated by a two-cluster system in which a B=1 Skyrmion is attached to a core B=4 Skyrmion. We quantize this system, allowing the B=1 to freely orbit the core. The configuration space is 11 dimensional but simplifies significantly after factoring out the overall spin and isospin degrees of freedom. We exactly solve the free quantum problem and then include an interaction potential between the Skyrmions numerically. The resulting energy spectrum is compared to the corresponding nuclei—the helium-5/lithium-5 isodoublet. We find approximate parity doubling not seen in the experimental data. In addition, we fail to obtain the correct ground-state spin. The framework laid out for this two-cluster system can readily be modified for other clusters and in particular for other B=4n+1 nuclei, of which B=5 is the simplest example

    Long-term interleukin-6 levels and subsequent risk of coronary heart disease: Two new prospective studies and a systematic review

    Get PDF
    Background The relevance to coronary heart disease (CHD) of cytokines that govern inflammatory cascades, such as interleukin-6 (IL-6), may be underestimated because such mediators are short acting and prone to fluctuations. We evaluated associations of long-term circulating IL-6 levels with CHD risk (defined as nonfatal myocardial infarction [MI] or fatal CHD) in two population-based cohorts, involving serial measurements to enable correction for within-person variability. We updated a systematic review to put the new findings in context. Methods and Findings Measurements were made in samples obtained at baseline from 2,138 patients who had a first-ever nonfatal MI or died of CHD during follow-up, and from 4,267 controls in two cohorts comprising 24,230 participants. Correction for within-person variability was made using data from repeat measurements taken several years apart in several hundred participants. The year-to-year variability of IL-6 values within individuals was relatively high (regression dilution ratios of 0.41, 95% confidence interval [CI] 0.28-0.53, over 4 y, and 0.35, 95% CI 0.23-0.48, over 12 y). Ignoring this variability, we found an odds ratio for CHD, adjusted for several established risk factors, of 1.46 (95% CI 1.29-1.65) per 2 standard deviation (SD) increase of baseline IL-6 values, similar to that for baseline C-reactive protein. After correction for within-person variability, the odds ratio for CHD was 2.14 (95% CI 1.45-3.15) with long-term average ("usual'') IL-6, similar to those for some established risk factors. Increasing IL-6 levels were associated with progressively increasing CHD risk. An updated systematic review of electronic databases and other sources identified 15 relevant previous population-based prospective studies of IL-6 and clinical coronary outcomes (i.e., MI or coronary death). Including the two current studies, the 17 available prospective studies gave a combined odds ratio of 1.61 (95% CI 1.42-1.83) per 2 SD increase in baseline IL-6 (corresponding to an odds ratio of 3.34 [95% CI 2.45-4.56] per 2 SD increase in usual [long-term average] IL-6 levels). Conclusions Long-term IL-6 levels are associated with CHD risk about as strongly as are some major established risk factors, but causality remains uncertain. These findings highlight the potential relevance of IL-6-mediated pathways to CH

    Non-Abelian vortex dynamics: Effective world-sheet action

    Full text link
    The low-energy vortex effective action is constructed in a wide class of systems in a color-flavor locked vacuum, which generalizes the results found earlier in the context of U(N) models. It describes the weak fluctuations of the non-Abelian orientational moduli on the vortex worldsheet. For instance, for the minimum vortex in SO(2N) x U(1) or USp(2N) x U(1) gauge theories, the effective action found is a two-dimensional sigma model living on the Hermitian symmetric spaces SO(2N)/U(N) or USp(2N)/U(N), respectively. The fluctuating moduli have the structure of that of a quantum particle state in spinor representations of the GNO dual of the color-flavor SO(2N) or USp(2N) symmetry, i.e. of SO(2N) or of SO(2N+1). Applied to the benchmark U(N) model our procedure reproduces the known CP(N-1) worldsheet action; our recipe allows us to obtain also the effective vortex action for some higher-winding vortices in U(N) and SO(2N) theories.Comment: LaTeX, 25 pages, 0 figure

    Group Theory of Non-Abelian Vortices

    Full text link
    We investigate the structure of the moduli space of multiple BPS non-Abelian vortices in U(N) gauge theory with N fundamental Higgs fields, focusing our attention on the action of the exact global (color-flavor diagonal) SU(N) symmetry on it. The moduli space of a single non-Abelian vortex, CP(N-1), is spanned by a vector in the fundamental representation of the global SU(N) symmetry. The moduli space of winding-number k vortices is instead spanned by vectors in the direct-product representation: they decompose into the sum of irreducible representations each of which is associated with a Young tableau made of k boxes, in a way somewhat similar to the standard group composition rule of SU(N) multiplets. The K\"ahler potential is exactly determined in each moduli subspace, corresponding to an irreducible SU(N) orbit of the highest-weight configuration.Comment: LaTeX 46 pages, 4 figure

    Skyrmions, Skyrme stars and black holes with Skyrme hair in five spacetime dimension

    Get PDF
    We consider a class of generalizations of the Skyrme model to five spacetime dimensions (d = 5), which is de fined in terms of an O (5) sigma model. A special ansatz for the Skyrme field allows angular momentum to be present and equations of motion with a radial dependence only. Using it, we obtain: 1) everywhere regular solutions describing localised energy lumps (Skyrmions); 2) Self-gravitating, asymptotically flat, everywhere non-singular solitonic solutions (Skyrme stars), upon minimally coupling the model to Einstein's gravity; 3) both static and spinning black holes with Skyrme hair, the latter with rotation in two orthogonal planes, with both angular momenta of equal magnitude. In the absence of gravity we present an analytic solution that satisfies a BPS-type bound and explore numerically some of the non-BPS solutions. In the presence of gravity, we contrast the solutions to this model with solutions to a complex scalar field model, namely boson stars and black holes with synchronised hair. Remarkably, even though the two models present key differences, and in particular the Skyrme model allows static hairy black holes, when introducing rotation, the synchronisation condition becomes mandatory, providing further evidence for its generality in obtaining rotating hairy black holes

    Supersymmetry Breaking on Gauged Non-Abelian Vortices

    Full text link
    There are a large number of systems characterized by a completely broken gauge symmetry, but with an unbroken global color-flavor diagonal symmetry, i.e., systems in the so-called color-flavor locked phase. If the gauge symmetry breaking supports vortices, the latter develop non-Abelian orientational zero-modes and become non-Abelian vortices, a subject of intense study in the last several years. In this paper we consider the effects of weakly gauging the full exact global flavor symmetry in such systems, deriving an effective description of the light excitations in the presence of a vortex. Surprising consequences are shown to follow. The fluctuations of the vortex orientational modes get diffused to bulk modes through tunneling processes. When our model is embedded in a supersymmetric theory, the vortex is still 1/2 BPS saturated, but the vortex effective action breaks supersymmetry spontaneously.Comment: Latex, 24 pages, 1 figur
    • …
    corecore