31 research outputs found

    The effects of hypertonic fluid administration on the gene expression of inflammatory mediators in circulating leucocytes in patients with septic shock: a preliminary study

    Get PDF
    Contains fulltext : 98426.pdf (publisher's version ) (Open Access)ABSTRACT: OBJECTIVE: This study was designed to investigate the effect of hypertonic fluid administration on inflammatory mediator gene expression in patients with septic shock. DESIGN AND SETTING: Prospective, randomized, controlled, double-blind clinical study in a 15-bed mixed intensive care unit in a tertiary referral teaching hospital. INTERVENTIONS: Twenty-four patients, who met standard criteria for septic shock, were randomized to receive a bolus of hypertonic fluid (HT, 250 ml 6% HES/7.2% NaCl) or isotonic fluid (IT, 500 ml 6% HES/0.9% NaCl) administered over 15 minutes. Randomization and study fluid administration was within 24 hours of ICU admission for all patients. This trial is registered with ANZCTR.org.au as ACTRN12607000259448. RESULTS: Blood samples were taken immediately before and 4, 8, 12, and 24 hours after fluid administration. Real-time reverse transcriptase polymerase chain reaction (RT rtPCR) was used to quantify mRNA expression of different inflammatory mediators in peripheral leukocytes. In the HT group, compared with the IT group, levels of gene expression of MMP9 and L-selectin were significantly suppressed (p = 0.0002 and p = 0.007, respectively), and CD11b gene expression tended to be elevated (p = NS). No differences were found in the other mediators examined. CONCLUSIONS: In septic shock patients, hypertonic fluid administration compared with isotonic fluid may modulate expression of genes that are implicated in leukocyte-endothelial interaction and capillary leakage.The study was performed at the Intensive Care Department, Waikato Hospital, and at the Molecular Genetics Laboratory, University of Waikato, Hamilton, New Zealand. TRIAL REGISTRATION: Australia and New Zealand Clinical Trials Register (ANZCTR): ACTRN12607000259448

    Leukotriene biosynthesis inhibition ameliorates acute lung injury following hemorrhagic shock in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.</p> <p>Objectives</p> <p>The objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.</p> <p>Materials and methods</p> <p>Eighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B<sub>4 </sub>(LTB<sub>4</sub>), leukotriene C<sub>4 </sub>(LTC<sub>4</sub>) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.</p> <p>Results</p> <p>MK-886 treatment significantly reduced the total lung injury score compared with the HS group (<it>P </it>< 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB<sub>4</sub>, LTC<sub>4 </sub>& total protein compared with the HS group (<it>P </it>< 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (<it>P </it>< 0.05).</p> <p>Conclusions</p> <p>The results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.</p

    A murine model of hypertonic saline as a treatment for acute spinal cord injury: effects on autonomic outcome

    No full text
    Object Spinal cord injury (SCI) continues to be a problem without a definitive cure. Research based on improved understanding of the immunological aspects of SCI has revealed targets for treating and ameliorating the extent of secondary injury. Hypertonic saline (HTS), a substance both easy to create and to transport, has been investigated as an immunologically active material that can be used in a clinically relevant interval after injury. In this pilot study, HTS was investigated in a murine model for its abilities to ameliorate secondary injury after a severe spinal cord contusion. Methods Female C57Bl/6 mice with severe T8–10 contusion injuries were used as the model subjects. A group of 41 mice were studied in a blinded fashion. Mice received treatments with HTS (HTS, 7.5%) or normal saline solution (NSS, 0.9%) at 2 discreet time points (3 and 24 hours after injury.) A separate group of 9 untreated animals were also used as controls. Animals were assessed for autonomic outcome (bladder function). In a group of 33 mice, histological assessment (cellular infiltration) was also measured. Results Bladder function was found to be improved significantly in those treated with HTS compared with those who received NSS and also at later treatment times (24 hours) than at earlier treatment times (3 hours). Decreased cellular infiltration in each group correlated with bladder recovery. Conclusions The increased effectiveness of later administration time of the more osmotically active and immunomodulatory substance (HTS) suggests that interaction with events occurring around 24 hours after injury is critical. These events may be related to the invasion of leukocytes peaking at 8–24 hours postinjury and/or the peak benefit time of subject rehydration
    corecore