35 research outputs found

    Cysteine string protein monitors late steps in cystic fibrosis transmembrane conductance regulator biogenesis

    No full text
    We examined the role of the cysteine string protein (Csp) in cystic fibrosis transmembrane conductance regulator ( CFTR) biogenesis in relation to another J-domain protein, Hdj-2, a recognized CFTR cochaperone. Increased expression of Csp produced a dose-dependent reduction in mature(band C) CFTR and an increase in immature( band B) CFTR. Exogenous expression of Hdj-2 also increased CFTR band B, but unlike Csp, Hdj-2 increased band C as well. The Csp-induced block of CFTR maturation required Hsp70, because a J-domain mutant (H43Q) that interferes with the ability of Csp to stimulate Hsp70 ATPase activity relieved the Csp-induced block of CFTR maturation. Nevertheless, Csp H43Q still increased immature CFTR. Csp-induced band B CFTR was found adjacent to the nucleus, co-localizing with calnexin, and it remained detergent-soluble. These data indicate that Csp did not block CFTR maturation by promoting the aggregation or degradation of immature CFTR. Csp knockdown by RNA interference produced a 5-fold increase in mature CFTR and augmented cAMP-stimulated CFTR currents. Thus, the production of mature CFTR is inversely related to the expression level of Csp. Both Csp and Hdj-2 associated with the CFTR R-domain in vitro, and Hdj-2 binding was displaced by Csp, suggesting common interaction sites. Combined expression of Csp and Hdj-2 mimicked the effect of Csp alone, a block of CFTR maturation. But together, Csp and Hdj-2 produced additive increases in CFTR band B, and this did not depend on their interactions with Hsp70, consistent with direct chaperone actions of these proteins. Like Hdj-2, Csp reduced the aggregation of NBD1 in vitro in the absence of Hsp70. Our data suggest that both Csp and Hdj-2 facilitate the biosynthesis of immature CFTR, acting as direct CFTR chaperones, but in addition, Csp is positioned later in the CFTR biogenesis cascade where it regulates the production of mature CFTR by limiting its exit from the endoplasmic reticulum.status: publishe

    The mechanism for activation of the neutrophil NADPH-oxidase by the peptides formyl-Met-Leu-Phe and Trp-Lys-Tyr-Met-Val-Met differs from that for interleukin-8

    No full text
    Neutrophil chemotaxis has been shown to be regulated by two different signalling pathways that allow strong chemoattractants, such as bacterial-derived formylated peptides, to dominate over endogenous attractants, such as interleukin-8 (IL-8). Here we show that triggering of the formyl peptide receptor (FPR) with f-Met-Leu-Phe (fMLF) substantially reduced the neutrophil superoxide production induced by activation of the CXC receptors with IL-8. When the order of agonists was reversed, the cells were primed in their response to fMLF, suggesting that the signalling hierarchy between strong, so-called end-type (i.e. fMLF) and weak or intermediate-type (i.e. IL-8) chemoattractants, is also operating during activation of the NADPH-oxidase. The same result was obtained when fMLF was replaced with the hexapeptide, WKYMVM, specific for the formyl peptide-like receptor 1 (FPRL1). There were additional differences between the agonist receptor pairs fMLF/FPR, WKYMVM/FPRL1 and IL-8/CXCR. In contrast to FPR and FPRL1, no reserve pool of CXCR was present in subcellular granules and it was impossible to prime the oxidative response transduced through CXCR by the addition of priming agents such as tumour necrosis factor-α and platelet-activating factor. Moreover, the cytoskeleton-disrupting substance, cytochalasin B, had no effect either on IL-8-triggered oxidase activation or on CXCR reactivation. A pertussis toxin-sensitive G-protein is involved in signalling mediated through both FPR and CXCR, and the signalling cascades include a transient intracellular calcium increase, as well as downstream p38 MAPK and phosphoinositide 3-kinase activation. The data presented in this study provide support for two different signalling pathways to the neutrophil NADPH-oxidase, used by ligand binding to FPR/FPRL1 or CXCR, respectively

    Tumour necrosis factor-α potentiates CR3-induced respiratory burst by activating p38 MAP kinase in human neutrophils

    No full text
    CR3 and FcγRs are the main receptors involved in the phagocytic process leading to engulfment and killing of microbes by production of reactive oxygen intermediates (ROI) and degranulation. Various inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS), are known to prime neutrophils leading to increased bactericidal responses, but the underlying mechanism of priming has only been partially elucidated. The purpose of this study was to investigate how TNF-α primes neutrophils for subsequent stimuli via either CR3 or FcγR. The receptors were specifically activated with pansorbins (protein-A-positive Staphylococcus aureus) coated with anti-CR3, anti-FcγRIIa, or anti-FcγRIIIb monoclonal antibody. Activation of neutrophils with these particles resulted in ROI production as measured by chemiluminescence. Anti-CR3 pansorbins induced the most prominent ROI production in neutrophils. TNF-α potentiated the CR3-mediated respiratory burst but had little effect on that mediated by FcγRs. The priming effect of TNF-α on CR3-mediated ROI production is associated with an increased activation of p38 MAPK as well as tyrosine phosphorylation of p72(syk). Pretreatment of neutrophils with the inhibitors for p38 MAPK and p72(syk) markedly suppressed the respiratory burst induced by CR3. Furthermore, TNF-α induced about a three-fold increase in the expression of CR3 in neutrophils, an effect which is blocked by the p38 MAPK inhibitor. Taken together, these results showed that TNF-α potentiates the CR3-mediated respiratory burst in neutrophils not only by triggering a p38 MAPK-dependent up-regulation of CD11b/CD18 but also by modulating the signalling pathways

    High frequency stimulation induces sonic hedgehog release from hippocampal neurons

    No full text
    Sonic hedgehog (SHH) as a secreted protein is important for neuronal development in the central nervous system (CNS). However, the mechanism about SHH release remains largely unknown. Here, we showed that SHH was expressed mainly in the synaptic vesicles of hippocampus in both young postnatal and adult rats. High, but not low, frequency stimulation, induces SHH release from the neurons. Moreover, removal of extracellular Ca(2+), application of tetrodotoxin (TTX), an inhibitor of voltage-dependent sodium channels, or downregulation of soluble n-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) proteins, all blocked SHH release from the neurons in response to HFS. Our findings suggest a novel mechanism to control SHH release from the hippocampal neurons

    Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is characterized by progressive neuropathology and cognitive decline. We performed a cross-tissue analysis of methylomic variation in AD using samples from four independent human post-mortem brain cohorts. We identified a differentially methylated region in the ankyrin 1 (ANK1) gene that was associated with neuropathology in the entorhinal cortex, a primary site of AD manifestation. This region was confirmed as being substantially hypermethylated in two other cortical regions (superior temporal gyrus and prefrontal cortex), but not in the cerebellum, a region largely protected from neurodegeneration in AD, or whole blood obtained pre-mortem from the same individuals. Neuropathology-associated ANK1 hypermethylation was subsequently confirmed in cortical samples from three independent brain cohorts. This study represents, to the best of our knowledge, the first epigenome-wide association study of AD employing a sequential replication design across multiple tissues and highlights the power of this approach for identifying methylomic variation associated with complex disease
    corecore