456 research outputs found

    Immune system challenge in a host-parasitoid-pathogen system: interaction between Cotesia plutellae (Hym.: Braconidae) and Bacillus thuringiensis influences parasitism and phenoloxidase cascade of Plutella xylostella (Lep.: Plutellidae)

    Get PDF
    We investigated the effects of interaction between Cotesia plutellae (Kurdjumov) and Bacillus thuringiensis Berliner on parasitism and an immune effector (phenoloxidase activity) of a Bt-susceptible and a Bt-resistant population of Plutella xylostella (Linnaeus) in laboratory. Parasitism success of C. plutellae varied depending on the use of B. thuringiensis or its toxin, and the timing of application. Percentage parasitism was significantly greater on Cry1Ac-treated hosts than B. thuringiensis var. kurstaki-treated hosts (the susceptible population), and greater when hosts were treated with B. thuringiensis var. kurstaki before parasitism compared to that after parasitism (the resistant population). Specific phenoloxidase activity was significantly reduced in Cry1Ac-treated or parasitized hosts, but combined effect of the toxin and the parasitoid caused a greater reduction in phenoloxidase activity. The lower phenoloxidase activity in unparasitized resistant population of P. xylostella compared with the susceptible one is likely to be due to fitness costs, manifesting a possible trade-off between pathogen resistance and parasitoid resistance. However, C. plutellae overwhelmingly suppressed phenoloxidase activity of both the susceptible and resistant populations of P. xylostella. We found that the interaction between B. thuringiensis and C. plutellae was synergistic, which is promising for integration of the pathogen and the parasitoid in management of P. xylostella populations

    Statistical Optimization Approaches for High Cell Biomass Production of Lactobacillus casei

    Get PDF
    216-221Probiotic bacteria are known to treat and prevent diseases and hence promote physical and mental wellness due to their significant brain-gut relationship. The main challenge involved in probiotic commercialization is the bio processing limitation to produce high cell mass, especially with the cultivation of lactic acid bacteria which produces lactic acid as a by product. Synthesis of lactic acid by lactic acid bacteria inhibits bacterial growth, and in turn disrupts high cell mass production. Current work presents the findings for Lactobacillus casei medium optimization by response surface methodology in shake flask level. A simple medium using 4 components: lactose, soybean meal, yeast extract and magnesium sulphate has been identified to produce high cell mass than generic mediaused for probiotic cultivation, such as the MRS medium. Secondly, response surface methodology using Box-Behken Design was employed as an optimization strategy. After optimization process, the production of Lactobacillus casei biomass increased by about 164.6% recording 6.51g.L-1 compared to cell biomass obtained using initial un-optimized medium (2.46g.L-1)

    Tree bark scrape fungus: a potential source of laccase for application in bioremediation of non-textile dyes

    Get PDF
    Although laccase has been recognized as a wonder molecule and green enzyme, the use of low yielding fungal strains, poor production, purification, and low enzyme kinetics have hampered its large-scale application. Thus,this study aims to select high yielding fungal strains and optimize the production, purification, and kinetics of laccase of Aspergillus sp. HB-RZ4. The results obtained indicated that Aspergillus sp. HB-RZ4 produced a significantly large amount of laccase under meso-acidophilic shaking conditions in a medium containing glucose and yeast extract. A 25 μM CuSO4 was observed to enhance the enzyme yield. The enzyme was best purified on a Sephadex G-100 column. The purified enzyme resembled laccase of A. flavus. The kinetics of the purified enzyme revealed high substrate specificity and good velocity of reaction,using ABTS as a substrate. The enzyme was observed to be stable over various pH values and temperatures. The peptide structure of the purified enzyme was found to resemble laccase of A. kawachii IFO 4308. The fungus was observed to decolorize various dyes independent of the requirement of a laccase mediator system. Aspergillus sp. HB-RZ4 was observed to be a potent natural producer of laccase, and it decolorized the dyes even in the absence of a laccase mediator system. Thus, it can be used for bioremediation of effluent that contains non-textile dyes. © 2020 Sayyed et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    The effect of mycorrhizal fungi and organic fertilizers on quantitative and qualitative traits of two important satureja species

    Get PDF
    The quantitative yield and essential oil percentage and composition of two important savory species in response to various fertilizers were explored in a field experiment as a factorial study based on a randomized complete block design with three replications in north Lorestan, Iran, in 2017–2019. The first factor was assigned to three mycorrhizal fungi (Funneliformis mosseae, Rhizophagus irregularis, and Glomus fasciculatum), phosphate biofertilizer (Baravar-2), fish manure (800 kg/ha), cattle manure (20 t/ha), vermicompost (5 t/ha), and a control (no fertilization); the second factor was assigned to two savory species, including Satureja khuzestanica and S. rechingeri. The results of the combined analysis of variance for the second and third years showed that the simple effects of fertilizers and species were significant on all recorded traits, except for some constituents of the essential oil. Among the mycorrhizal fungi, R. irregularis and S. khuzestanica outperformed S. rechingeri in all traits, except for essential oil content and yield. The interaction between year and species was significant for all traits. The essential oil content of S. rechingeri in the third year (5.1%) was 18% higher than that of S. rechingeri in the second year (4.3%) and 41% higher than that of S. khuzestanica in the third year (3.6%). According to the results, the foliar application of vermin compost at a rate of 5 t/ha can contribute to the sustainable production of both savory species, improving their growth and essential oil yield

    Modelling pressure deficient water distribution networks in EPANET

    Get PDF
    Nodal outflows in a pressure deficient water distribution network depend on available nodal heads. Thus, node-head flow relationship exists at each node which are solved along with other appropriate equations for simulation. While using EPANET for such simulation, source code needs to be modified to obtain direct solution. The other way is to use EPANET iteratively wherein node head-flow relationships are satisfied externally. Herein, a simple non-iterative method is suggested in which artificial string of Check Valve, Flow Control Valve, and Emitter are added in series at each demand node to model pressure deficient water distribution network

    Influence of Increasing SnO2 Content on the Mechanical, Optical, and Gamma-Ray Shielding Characteristics of a Lithium Zinc Borate Glass System

    Full text link
    A series of six samples were prepared based on the chemical composition of 65B2O3 + 20ZnO + (15-x)LiF + xSnO2 (where x = 0, 0.25, 0.5, 0.75, 1, and 1.25 mol%) to study the role of SnO2 on enhancing the optical and radiation attenuation capacity of the prepared glasses. The preparation of the glass series was performed using the melt quenching method at 1100 °C for 60 min. The density of the fabricated samples was measured using an MH-300A densimeter. The optical parameters of the fabricated glasses were calculated based on the spectrum recorded by a Cary 5000 UV–Vis–NIR double beam spectrophotometer in a wavelength range of 200 to 3000 nm. Furthermore, Monte Carlo simulation code and the XCOM online database were used to estimate the gamma-ray shielding capacity of the fabricated samples from 0.244 to 2.506 MeV. The results show enhanced gamma-ray shielding capacity due to the replacement of LiF by SnO2. The linear attenuation coefficient at 0.244 MeV was enhanced from 0.352 to 0.389 cm−1. The half-value thickness of the investigated glasses decreased from 1.967 to 1.784 cm when the increasing addition of SnO2 from 0 to 1.25 mol%. © 2022, The Author(s).The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (PNURSP2022R2), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

    Characterization and Gamma-ray Shielding Performance of Calcinated and Ball-Milled Calcinated Bentonite Clay Nanoparticles

    Full text link
    The current investigation deals with the fabrication of two various composite-based bentonite clay minerals. The characterization and radiation shielding parameters for the two fabricated composites (calcinated and ball-milled calcinated bentonite) were studied. X-ray diffraction was utilized to illustrate the crystalline phase of the fabricated composites. Furthermore, Williamson and Hall’s method was used to determine the grain size of both the calcinated and ball-milled calcinated composites. The particle size, according to the calculation was 39.84 nm, and the strain was 0.216 for the calcinated bentonite, while the particle size of the ball-milled bentonite was 26.96 nm, and the strain was 0.219. In comparison, the transmission electron microscope (TEM) showed that the grain size of the calcinated bentonite was 566.59 nm, and it was 296.21 nm for the ball-milled calcinated bentonite. The density of the fabricated composites varied between 1.60 and 186 g/cm3 for the calcinated bentonite and between 1.83 and 2.075 g/cm3 for the ball-milled calcinated bentonite. Moreover, the radiation shielding capacity of the composites was analyzed. The results show that the gamma-ray attenuation capacity of ball-milled calcinated bentonite is high compared to ordinary calcinated bentonite. These results confirm the effect of particle grain size on optimizing the gamma-ray shielding capacity of the fabricated materials. © 2022 by the authors.Princess Nourah Bint Abdulrahman University, PNU: PNURSP2022R57The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
    corecore