147 research outputs found

    Does Income Mobility Equalize Longer-term Incomes? New Measures of an Old Concept

    Get PDF
    This paper develops a new class of measures of mobility as an equalizer of longer-term incomes – a concept different from other notions such as mobility as time-independence, positional movement, share movement, income flux, and directional income movement. A number of properties are specified leading to a class of indices, one easily-implementable member of which is applied to data for the United States and France. Using this index, income mobility is found to have equalized longer-term earnings among U.S. men in the 1970s but not in the 1980s or 1990s. In France, though, income mobility was equalizing throughout, and it has attained its maximum in the most recent period

    Systematic and Controllable Negative, Zero, and Positive Thermal Expansion in Cubic Zr1–xSnxMo2O8

    Get PDF
    We describe the synthesis and characterization of a family of materials, Zr1–xSnxMo2O8 (0 < x < 1), whose isotropic thermal expansion coefficient can be systematically varied from negative to zero to positive values. These materials allow tunable expansion in a single phase as opposed to using a composite system. Linear thermal expansion coefficients, αl, ranging from −7.9(2) × 10–6 to +5.9(2) × 10–6 K–1 (12–500 K) can be achieved across the series; contraction and expansion limits are of the same order of magnitude as the expansion of typical ceramics. We also report the various structures and thermal expansion of “cubic” SnMo2O8, and we use time- and temperature-dependent diffraction studies to describe a series of phase transitions between different ordered and disordered states of this material

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore