1,280 research outputs found
On connectivity-dependent resource requirements for digital quantum simulation of -level particles
A primary objective of quantum computation is to efficiently simulate quantum
physics. Scientifically and technologically important quantum Hamiltonians
include those with spin-, vibrational, photonic, and other bosonic degrees
of freedom, i.e. problems composed of or approximated by -level particles
(qudits). Recently, several methods for encoding these systems into a set of
qubits have been introduced, where each encoding's efficiency was studied in
terms of qubit and gate counts. Here, we build on previous results by including
effects of hardware connectivity. To study the number of SWAP gates required to
Trotterize commonly used quantum operators, we use both analytical arguments
and automatic tools that optimize the schedule in multiple stages. We study the
unary (or one-hot), Gray, standard binary, and block unary encodings, with
three connectivities: linear array, ladder array, and square grid. Among other
trends, we find that while the ladder array leads to substantial efficiencies
over the linear array, the advantage of the square over the ladder array is
less pronounced. These results are applicable in hardware co-design and in
choosing efficient qudit encodings for a given set of near-term quantum
hardware. Additionally, this work may be relevant to the scheduling of other
quantum algorithms for which matrix exponentiation is a subroutine.Comment: Accepted to QCE20 (IEEE Quantum Week). Corrected erroneous circuits
in Figure
qTorch: The Quantum Tensor Contraction Handler
Classical simulation of quantum computation is necessary for studying the
numerical behavior of quantum algorithms, as there does not yet exist a large
viable quantum computer on which to perform numerical tests. Tensor network
(TN) contraction is an algorithmic method that can efficiently simulate some
quantum circuits, often greatly reducing the computational cost over methods
that simulate the full Hilbert space. In this study we implement a tensor
network contraction program for simulating quantum circuits using multi-core
compute nodes. We show simulation results for the Max-Cut problem on 3- through
7-regular graphs using the quantum approximate optimization algorithm (QAOA),
successfully simulating up to 100 qubits. We test two different methods for
generating the ordering of tensor index contractions: one is based on the tree
decomposition of the line graph, while the other generates ordering using a
straight-forward stochastic scheme. Through studying instances of QAOA
circuits, we show the expected result that as the treewidth of the quantum
circuit's line graph decreases, TN contraction becomes significantly more
efficient than simulating the whole Hilbert space. The results in this work
suggest that tensor contraction methods are superior only when simulating
Max-Cut/QAOA with graphs of regularities approximately five and below. Insight
into this point of equal computational cost helps one determine which
simulation method will be more efficient for a given quantum circuit. The
stochastic contraction method outperforms the line graph based method only when
the time to calculate a reasonable tree decomposition is prohibitively
expensive. Finally, we release our software package, qTorch (Quantum TensOR
Contraction Handler), intended for general quantum circuit simulation.Comment: 21 pages, 8 figure
Sôbre a fisiologia dos músculos longitudinais de Holothuria grisea
Demonstrou-se grande sensibilidade do m. longitudinal de H. grisea à Ach. Os ensaios fazem-se com grande rapidez, se comparados com os outros métodos usualmente preconizados na determinação do teor da Ach em extratos de tecidos
- …