973 research outputs found

    Anomalous relaxation kinetics of biological lattice-ligand binding models

    Full text link
    We discuss theoretical models for the cooperative binding dynamics of ligands to substrates, such as dimeric motor proteins to microtubules or more extended macromolecules like tropomyosin to actin filaments. We study the effects of steric constraints, size of ligands, binding rates and interaction between neighboring proteins on the binding dynamics and binding stoichiometry. Starting from an empty lattice the binding dynamics goes, quite generally, through several stages. The first stage represents fast initial binding closely resembling the physics of random sequential adsorption processes. Typically this initial process leaves the system in a metastable locked state with many small gaps between blocks of bound molecules. In a second stage the gaps annihilate slowly as the ligands detach and reattach. This results in an algebraic decay of the gap concentration and interesting scaling behavior. Upon identifying the gaps with particles we show that the dynamics in this regime can be explained by mapping it onto various reaction-diffusion models. The final approach to equilibrium shows some interesting dynamic scaling properties. We also discuss the effect of cooperativity on the equilibrium stoichiometry, and their consequences for the interpretation of biochemical and image reconstruction results.Comment: REVTeX, 20 pages, 17 figures; review, to appear in Chemical Physics; v2: minor correction

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    This paper is concerned with the use of numerically obtained modal curvatures for damage detection in both isotropic and composite laminated plates. Numerical simulations are carried out by using COMSOL Multiphysics as FEM solver of the governing equations, in which a Mindlin-Reissner plate model is assumed and defects are introduced as localized smoothed variations of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. This study confirms that the central difference method greatly amplifies the measurement errors and its application leads to ineffective predictions for damage detection, even after denoising. As a consequence, different numerical techniques should be explored to allow the use of numerically obtained modal curvatures for structural health monitoring. Herein, the Savitzky-Golay filter (or least-square smoothing filter) is considered for the numerical differentiation of noisy data

    Numerical and experimental assessment of the modal curvature method for damage detection in plate structures

    Get PDF
    Use of modal curvatures obtained from modal displacement data for damage detection in isotropic and composite laminated plates is addressed through numerical examples and experimental tests. Numerical simulations are carried out employing COMSOL Multiphysics as finite element solver of the equations governing the Mindlin-Reissner plate model. Damages are introduced as localized non-smooth variations of the bending stiffness of the baseline (healthy) configuration. Experiments are also performed on steel and aluminum plates using scanning laser vibrometry. The obtained results confirm that use of the central difference method to compute modal curvatures greatly amplifies the measurement errors and its application leads to unreliable predictions for damage detection, even after denoising. Therefore, specialized ad hoc numerical techniques must be suitably implemented to enable structural health monitoring via modal curvature changes. In this study, the Savitzky-Golay filter (also referred to as least-square smoothing filter) is considered for the numerical differentiation of noisy data. Numerical and experimental results show that this filter is effective for the reliable computation of modal curvature changes in plate structures due to defects and/or damages

    Chemical Defense of an Asian Snake Reflects Local Availability of Toxic Prey and Hatchling Diet

    Get PDF
    Species that sequester toxins from prey for their own defense against predators may exhibit population-level variation in their chemical arsenal that reflects the availability of chemically defended prey in their habitat. Rhabdophis tigrinus is an Asian snake that possesses defensive glands in the skin of its neck (nuchal glands\u27), which typically contain toxic bufadienolide steroids that the snakes sequester from consumed toads. In this study, we compared the chemistry of the nuchal gland fluid of R.tigrinus from toad-rich and toad-free islands in Japan and determined the effect of diet on the nuchal gland constituents. Our findings demonstrate that captive-hatched juveniles from toad-rich Ishima Island that had not been fed toads possess defensive bufadienolides in their nuchal glands, presumably due to maternal provisioning of these sequestered compounds. Wild-caught juveniles from Ishima possess large quantities of bufadienolides, which could result from a combination of maternal provisioning and sequestration of these defensive compounds from consumed toads. Interestingly, juvenile females from Ishima possess larger quantities of bufadienolides than do juvenile males, whereas a small sample of field-collected snakes suggests that adult males contain larger quantities of bufadienolides than do adult females. Captive-born hatchlings from Kinkasan Island lack bufadienolides in their nuchal glands, reflecting the absence of toads on that island, but they can sequester bufadienolides by feeding on toads (Bufo japonicus) in captivity. The presence of large quantities of bufadienolides in the nuchal glands of R.tigrinus from Ishima may reduce the risk of predation by providing an effective chemical defense, whereas snakes on Kinkasan may experience increased predation due to the lack of defensive compounds in their nuchal glands

    Analysis of circadian pattern reveals tissue-specific alternative transcription in leptin signaling pathway

    Get PDF
    *Background*
It has been previously reported that most mammalian genes display a circadian oscillation in their baseline expression. Consequently, the phase and amplitude of each component of a signal transduction cascade has downstream consequences. 

*Results*
We report our analysis of alternative transcripts in the leptin signaling pathway which is responsible for the systemic regulation of macronutrient storage and energy balance. We focused on the circadian expression pattern of a critical component of the leptin signaling system, suppressor of cytokine signaling 3 (SOCS3). On an Affymetrix GeneChip 430A2 microarray, this gene is represented by three probe sets targeting different regions within the 3’ end of the last exon. We demonstrate that in murine brown adipose tissue two downstream 3’ probe sets experience circadian baseline oscillation in counter-phase to the upstream probe set. Such differences in expression patterns are a telltale sign of alternative splicing within the last exon of SOCS3. In contrast, all three probe sets oscillated in a common phase in murine liver and white adipose tissue. This suggests that the regulation of SOCS3 expression in brown fat is tissue specific. Another component of the signaling pathway, Janus kinase (JAK), is directly regulated by SOCS and has alternative transcript probe sets oscillating in counter-phase in a white adipose tissue specific manner.
 
*Conclusion*
We hypothesize that differential oscillation of alternative transcripts may provide a mechanism to maintain steady levels of expression in spite of circadian baseline variation

    Effect of substrate thermal resistance on space-domain microchannel

    Get PDF
    In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler

    ValiDichro: a website for validating and quality control of protein circular dichroism spectra

    Get PDF
    Circular dichroism (CD) spectroscopy is widely used in structural biology as a technique for examining the structure, folding and conformational changes of proteins. A new server, ValiDichro, has been developed for checking the quality and validity of CD spectral data and metadata, both as an aid to data collection and processing and as a validation procedure for spectra to be included in publications. ValiDichro currently includes 25 tests for data completeness, consistency and quality. For each test that is done, not only is a validation report produced, but the user is also provided with suggestions for correcting or improving the data. The ValiDichro server is freely available at http://valispec.cryst.bbk.ac.uk/circularDichroism/ValiDichro/upload.html
    corecore