101 research outputs found

    Effect of cell density on thrombin binding to a specific site on bovine vascular endothelial cells.

    Get PDF
    We studied thrombin binding to proliferating and confluent endothelial cells derived from bovine vascular endothelium. [125]thrombin was incubated with nonconfluent or confluent endothelial cells and both the total amount bound and the amount linked in a 77,000-dalton thrombin-cell complex were determined. Approximately 230,000 molecules of thrombin bound per cell in nonconfluent cultures compared to 12,800 molecules per cell in confluent cultures. Approximately 67,7000 thrombin molecules were bound in an apparently covalent complex, Mr = 77,000, with each cell in sparse cultures, whereas only 4,600 thrombin molecules per cell were bound in this complex with confluent cultures. Similar studies with [125I]thrombin and endothelial cells derived from bovine cornea revealed no difference either in the total amount of thrombin bound or in the amount bound in the 77,000-dalton complex using sparse or confluent cultures. When confluent vascular endothelial cultures were wounded, additional cellular binding sites for the 77,000-dalton complex with thrombin appeared within 24 h. A 237% increase in the amount of thrombin bound to these sites was induced by a wound which resulted in a 20% decrease in cell number in the monolayer. There was no significant increase in thrombin binding to other cellular sites at 24 h. These experiments provide evidence that the first change in thrombin binding after injury is an increase in the cellular sites involved in the 77,000-dalton complex, and suggest that thrombin binding to endothelial cells may be important in the vascular response to injury

    Expressions of Multiple Neuronal Dynamics during Sensorimotor Learning in the Motor Cortex of Behaving Monkeys

    Get PDF
    Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis), during adaptation to force-field perturbations. Perturbed trials (reaching to one direction) were practiced along with unperturbed trials (to other directions). The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.United States-Israel Binational Science FoundationIsrael Science FoundationIda Baruch FundRosetrees Trus
    corecore