3,059 research outputs found

    A Cry for Compassion: Fear of AIDS in Pennsylvania

    Get PDF

    Ultrathin and nanostructured ZnO-based films for fluorescence biosensing applications

    Get PDF
    The fluorescence-based sensing capability of ultrathin ZnO-SiO(2) nanoplatforms, deposited by an integrated approach of colloidal lithography and metal organic chemical vapor deposition, has been investigated upon adsorption of fluorescein-labeled albumin, used as model analyte biomolecule. The protein immobilization process after spontaneous adsorption/desorption significantly enhances the green emission of the different ZnO-based films, as evidenced by scanning confocal microscopy, corresponding to a comparable protein coverage detected by X-ray photoelectron spectroscopy. Moreover, experiments of fluorescence recovery after photobleaching evidence that the protein lateral diffusion at the biointerface is affected by the chemical and/or topographical patterning of hybrid ZnO-SiO(2) surfaces. The used approach is very promising for biomolecular detection applications of these ZnO-SiO(2) nanoplatforms, by simple sizing of the 2D vs. 3D patterning design, which in turn is accomplished by the fine tuning of the integrated colloidal lithography-chemical vapor deposition processes. (C) 2011 Elsevier Inc. All rights reserved

    Integration of Metal Organic Chemical Vapour Deposition and Wet Chemical Techniques to Obtain Highly Ordered Porous ZnO Nanoplatforms

    Get PDF
    Large-area, highly ordered ZnO micropores-arrays consisting of ZnO nanotubes delimited by ZnO nanorods have been successfully fabricated and tested for protein sensing applications. ZnO seed layers have been deposited by Metal Organic Chemical Vapour Deposition and readily patterned by Colloidal Lithography to attain ZnO nanorods growth at selective sites by Chemical Bath Deposition. The used synthetic approach has been proven effective for the easy assembly of ZnO nanoplatforms into high-density arrays. Both patterned and unpatterned ZnO nanorods have been morphologically and compositionally characterised and, thus, tested for model studies of protein mobility at the interface. The patterned layers, having a higher contribution of surface polar moieties than the corresponding unpatterned surfaces, exhibit a reduced lateral diffusion of the adsorbed protein. This evidence is related to the intrinsic porous nature of the ZnO hemispherical arrays characterised by a nanotube-nanorod hybrid networks. The present study gives a great impetus to the fabrication of tunable ZnO nanoplatforms having multiple morphologies and exceptionally high surface areas suitable for application in sensing devices

    Mechanical Systems: Symmetry and Reduction

    Get PDF
    Reduction theory is concerned with mechanical systems with symmetries. It constructs a lower dimensional reduced space in which associated conservation laws are taken out and symmetries are \factored out" and studies the relation between the dynamics of the given system with the dynamics on the reduced space. This subject is important in many areas, such as stability of relative equilibria, geometric phases and integrable systems

    Colloidal lithography and Metal-Organic Chemical Vapor Deposition process integration to fabricate ZnO nanohole arrays

    Get PDF
    A complete set up of optimal process conditions for an effective colloidal lithography/catalyst assisted MOCVD process integration is presented. It mainly focuses on the determination of the deposition temperature threshold for ZnO Metal-Organic Chemical Vapour Deposition (MOCVD) as well as the concentration of metal-organic silver (Ag) catalyst. Indeed, the optimization of such process parameters allows to tailor the ZnO film morphology in order to make the colloidal lithography/catalyst assisted MOCVD approach a valuable bottom up method to fabricate bi-dimensional ordered ZnO nanohole arrays. (C) 2010 Elsevier B.V. All rights reserved

    Gas leakage and HV test procedure for the INFN Muon MWPCs

    Get PDF
    The Muon MWPCs produced by INFN laboratories are subject to gas leakage and HV tests before the installation on the LHCb experiment. The test procedure and the software tools developed are described in this paper

    Neuroprotective Effect of a Nutritional Supplement Containing Spearmint Extract, Forskolin, Homotaurine and Group B Vitamins in a Mouse Model of Transient Ocular Hypertension

    Get PDF
    Glaucoma is one of the most common sight-threatening eye disorders and one of the main causes of irreversible blindness worldwide. The current therapies focusing on reducing intraocular pressure (IOP) are often insufficient to prevent the progression of the disease, so the therapeutic management of glaucoma remains a challenge. The aim of this study was to evaluate the neuroprotective, IOP-lowering independent effects of a nutritional supplement containing forskolin, homotaurine, spearmint extract and vitamins of the B group in a model of acute glaucoma developed in mice. Glaucoma was induced in adult wild-type C57BL/6J mice by transient elevation of IOP. The dietary supplement, branded as Gangliomix® (125 mg/kg/day), was administered by oral gavage for 17 days and ocular hypertension was induced on the 10th day of treatment. A histological analysis of the retinas was performed and RGC survival was evaluated with fluorogold labeling and Brn3a immunostaining on wholemount and retinal sections. Expression of alpha-spectrin, caspase-3, PARP-1 and GFAP was studied with western blotting or immunofluorescence. A significant increase in RGC survival was reported in the retina of mice treated with the dietary supplement as compared to vehicle-treated animals. The observed neuroprotection was associated with a calpain activity decrease, reduction in caspase-3 and PARP-1 activation, and prevention of GFAP upregulation. These effects were independent from the hypotensive effects of the supplement. Altogether, our data suggest that the dietary supplementation with forskolin, homotaurine, spearmint extract and vitamins of the B group supports RGC survival and may offer beneficial effects in glaucoma patients in combination with the currently used IOP-lowering therapy

    Culture-based antibiotic susceptibility testing for Helicobacter pylori infection: a systematic review

    Get PDF
    Background Primary antibiotic resistance in Helicobacter pylori (H. pylori) strains is increasing worldwide, affecting therapy success. The use of therapies tailored on susceptibility pre-testing at culture has been proposed, but data are still conflicting. Method We performed a systematic review to evaluate the role of a culture-based therapeutic approach for H. pylori treatment, taking into account the sensitivity of culture and the success rates achieved with tailored therapies in different therapeutic steps. Results We analyzed data from 51 studies. Overall, H. pylori strains were isolated in 80.7% of 7889 patients, the success rates being 78.1%, 77.5%, 86.3% and 86.6%, before first-, second-, third-line or more therapies, respectively. In comparative studies, the infection was cured in 89.9% of 2052 patients treated with tailored therapies, and in 77.6% of 2516 patients receiving empiric therapy (P<0.001). However, in the subanalysis, the tailored approach achieved optimal eradication rates (>90%) only when it was applied before first-and second-line therapies, but not before third-line or more attempts (<80%). Moreover, no significant difference emerged between the 2 approaches when data from only the most recent (last 5 years) studies were considered, as well as in those performed in Western populations. Conclusions The attempt to achieve antibiotic susceptibility testing before treatment failed in 20% of infected patients managed in dedicated laboratories. Culture-tailored therapies administered after 2 or more therapies achieved suboptimal eradication rates. The role of bacterial culture in patients whose therapeutic management failed to eradicate H. pylori probably needs to be corroborated by further data

    A 3D velocity model for earthquake location in Campi Flegrei area: application to the 1982-84 uplift event

    Get PDF
    The uplift crisis of the 1982-1984 in the Campi Flegrei area underlined the importance of seismic surveillance for this volcanic caldera. One of the key elements for an effective seismic network is to make use of a reliable velocity model for earthquake location. In the present work we will discuss criteria for the construction and validation of a new 3D P-wave velocity model for earthquake location in the Campi Flegrei area built from the integration of two high-resolution 3D tomographic images of the region. The model is used for locating a group of earthquakes from the uplift event of the 1982-1984
    • …
    corecore