281 research outputs found

    Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jpclett.0c01734.[EN] "Shape" was the first criterion claimed to explain the specificity between organic structure-directing agents (OSDAs) and zeolite micropores. With the advent of computational chemistry methods applied to study the effectiveness of SDA-zeolite combinations, "energy" (mainly van der Waals) became the most commonly invoked concept to explain the zeolite phase selectivity. The lower the energy, the better the SDA_ In this study, we rescue the concept of shape, and we combine it with the concept of energy within the frame of a SDA screening approach to identify new SDAs for the synthesis of cage-based ITE zeolite. Once we identify an appropriate shape fingerprint, filtering through the SDA database can be done quickly and accurately. With the shape selection, an automated Monte Carlo software allows us to assess the suitability using the force-field-calculated zeo-SDA energy. The computational approach can be promptly applied to other cage-based zeolites.We thank MICINN of Spain for funding through projects RTI2018-101784-B-I00, RTI2018-101033-B-I00, and SEV-2016-0683. S.L. thanks MICINN for the predoctoral grant BES-2017-081245 corresponding to project SEV-2016-068317-2. Prof. A. Corma is acknowledged for collaboration from the SEV-2016-0683 project. We thank ASIC-UPV for the use of their computational facilities.León-Rubio, S.; Sastre Navarro, GI. (2020). Computational Screening of Structure-Directing Agents for the Synthesis of Pure Silica ITE Zeolite. The Journal of Physical Chemistry Letters. 11(15):6164-6167. https://doi.org/10.1021/acs.jpclett.0c01734S616461671115Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914uLi, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023hČejka, J., Millini, R., Opanasenko, M., Serrano, D. P., & Roth, W. J. (2020). Advances and challenges in zeolite synthesis and catalysis. Catalysis Today, 345, 2-13. doi:10.1016/j.cattod.2019.10.021Rimer, J. D. (2018). Rational design of zeolite catalysts. Nature Catalysis, 1(7), 488-489. doi:10.1038/s41929-018-0114-5Barrer, R. M. (1960). Stabilization of lattices by sorbed and included molecules. Journal of Physics and Chemistry of Solids, 16(1-2), 84-89. doi:10.1016/0022-3697(60)90076-7Zones, S. I. (1989). Synthesis of pentasil zeolites from sodium silicate solutions in the presence of quaternary imidazole compounds. Zeolites, 9(6), 458-467. doi:10.1016/0144-2449(89)90039-0Davis, M. E. (1993). New vistas in zeolite and molecular sieve catalysis. Accounts of Chemical Research, 26(3), 111-115. doi:10.1021/ar00027a006Gies, H., & Marker, B. (1992). The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O. Zeolites, 12(1), 42-49. doi:10.1016/0144-2449(92)90008-dBoyett, R. E., Stevens, A. P., Ford, M. G., & Cox, P. A. (1996). A quantitative shape analysis of organic templates employed in zeolite synthesis. Zeolites, 17(5-6), 508-512. doi:10.1016/s0144-2449(96)00073-5Bell, R. G., Lewis, D. W., Voigt, P., Freeman, C. M., Thomas, J. M., & Catlow, C. R. A. (1994). Computer Modelling of Sorbates and Templates in Microporous Materials. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 2075-2082. doi:10.1016/s0167-2991(08)63768-4Cox, P. A., Casci, J. L., & Stevens, A. P. (1997). Molecular modelling of templated zeolite synthesis. Faraday Discussions, 106, 473-487. doi:10.1039/a701487bWagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722uShi, C., Li, L., Yang, L., & Li, Y. (2020). Molecular simulations of host-guest interactions between zeolite framework STW and its organic structure-directing agents. Chinese Chemical Letters, 31(7), 1951-1955. doi:10.1016/j.cclet.2020.01.016Burton, A. W., Lee, G. S., & Zones, S. I. (2006). Phase selectivity in the syntheses of cage-based zeolite structures: An investigation of thermodynamic interactions between zeolite hosts and structure directing agents by molecular modeling. Microporous and Mesoporous Materials, 90(1-3), 129-144. doi:10.1016/j.micromeso.2005.11.022Gálvez-Llompart, M., Cantín, A., Rey, F., & Sastre, G. (2018). Computational screening of structure directing agents for the synthesis of zeolites. A simplified model. Zeitschrift für Kristallographie - Crystalline Materials, 234(7-8), 451-460. doi:10.1515/zkri-2018-2132Gálvez-Llompart, M., Gálvez, J., Rey, F., & Sastre, G. (2020). Identification of New Templates for the Synthesis of BEA, BEC, and ISV Zeolites Using Molecular Topology and Monte Carlo Techniques. Journal of Chemical Information and Modeling, 60(6), 2819-2829. doi:10.1021/acs.jcim.0c00231Schmidt, J. E., Deem, M. W., & Davis, M. E. (2014). Synthesis of a Specified, Silica Molecular Sieve by Using Computationally Predicted Organic Structure-Directing Agents. Angewandte Chemie International Edition, 53(32), 8372-8374. doi:10.1002/anie.201404076Daeyaert, F., & Deem, M. W. (2019). Design of organic structure directing agents for polymorph A zeolite beta. Journal of Materials Chemistry A, 7(16), 9854-9866. doi:10.1039/c8ta11913aDaeyaert, F., Ye, F., & Deem, M. W. (2019). Machine-learning approach to the design of OSDAs for zeolite beta. Proceedings of the National Academy of Sciences, 116(9), 3413-3418. doi:10.1073/pnas.1818763116Camblor, M. A., Corma, A., Lightfoot, P., Villaescusa, L. A., & Wright, P. A. (1997). Synthesis and Structure of ITQ-3, the First Pure Silica Polymorph with a Two-Dimensional System of Straight Eight-Ring Channels. Angewandte Chemie International Edition in English, 36(23), 2659-2661. doi:10.1002/anie.199726591Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025SciFinder; CAS: Columbus, OH, 2020. https://www.cas.org/products/scifinder. (Accessed July 15th, 2020)Foster, M. D., Rivin, I., Treacy, M. M. J., & Delgado Friedrichs, O. (2006). A geometric solution to the largest-free-sphere problem in zeolite frameworks. Microporous and Mesoporous Materials, 90(1-3), 32-38. doi:10.1016/j.micromeso.2005.08.02

    Carbonylation of dimethyl ether in mordenite using Inelastic Neutron Scattering

    Get PDF
    [EN] Zeolite mordenite (MOR, Si/Al =10) was used as catalyst for the reaction between CO and dimethyl ether (DME) to give methyl acetate. Since the reaction is catalysed by Bronsted acid sites, Inelastic Neutron Scattering (INS) is an appropriate technique to identify the intermediates. Although the accepted mechanism goes through an adsorbed methoxy, its characteristic peak at 963 cm-1 was only detected in the reaction MOR + DME, in the absence of CO. When CO is present, the peak at 963 cm-1 is substituted by other peaks that give valuable in-formation of the reaction intermediates, indicating that either methoxy intermediates are not formed or are quickly replaced by the acetyl intermediate, [SiO(COCH3)Al], strongly stabilised in the micropore pockets of mordenite. Upon reaction of MOR + CO + DME, a characteristic peak at 1050 cm-1, although being present in liquid methyl acetate, could not be assigned to adsorbed methyl acetate since it loses intensity as the reaction proceeds (upon heating), and was assigned to a strong interaction between CO and DME adsorbed in one or two Bronsted sites, leading to some intermediate that shares this vibrational feature with methyl acetate in liquid phase. Finally, a peak at 1275 cm-1 in the spectrum of MOR + CO + DME upon heating is assigned to the formation of methyl acetate when the sample is heated, corresponding to C-O stretching of methyl acetate. This is further confirmed by the absence of this peak before heating. Overall, INS technique has allowed an accurate determination and interpretation of peaks involved in the carbonylation of DME in mordenite.We thank CTI-CSIC for computational facilities. We thank ILL for neutron beam-time allocation (experiment 7-05-470). Financial support by the Spanish Ministry of Science and Innovation (CEX2021-001230-S grant funded by MCIN/AEI/10.13039/501100011033 funded by "ERDF A way of making Europe" and TED2021-130191B-C41 grant funded by the European Union NextGenerationEU/PRTR) are gratefully acknowledged. Authors thank also the financial support by Generalitat Valenciana (Prometeo 2021/077). This study forms part of the Advanced Materials programme and was supported by MCIN with partial funding from European Union Next Generation EU (PRTR-C17. I1) and by Generalitat Valenciana (MFA/2022/047).Jiménez-Ruiz, M.; Lemishko, T.; Rey Garcia, F.; Sastre Navarro, GI. (2024). Carbonylation of dimethyl ether in mordenite using Inelastic Neutron Scattering. Microporous and Mesoporous Materials. 364. https://doi.org/10.1016/j.micromeso.2023.11285036

    Effect of Intracrystalline Silanol Defects on the Diffusivity of Benzene in Silicalite Zeolite

    Get PDF
    [EN] Intracrystalline zeolite silanol defect groups (& EQUIV;SiOH) were modelled in silicalite (silica ZSM-5, MFI) using experimental data. We make a molecular dynamics study on the self-diffusivity of benzene in silicalite with defects. The simulations at three different loadings (1, 3 and 5 benzene per unit cell) and temperatures (298, 348 and 398 K) allow to calculate self-diffusivity, adsorption energy and the activation energy. The results show that benzene self-diffusivity in silicalite is increased by the presence of silanol defects. Previous experimental results support this claim.This work was supported by Generalitat Valenciana predoctoral fellowship GRISOLIAP/2019/084. We also thank Generalitat Valenciana for funding through PROMETEO/2021/077 project and CESGA for the use of computational facilities. Financial support by the Ministry of Science and Innovation (MICINN) of Spain through project CEX2021-001230-S (10.13039/501100011033) is gratefully acknowledged.Misturini, A.; Altundal, ÖF.; García-Aznar, P.; Kariminasab, S.; Sastre Navarro, GI. (2023). Effect of Intracrystalline Silanol Defects on the Diffusivity of Benzene in Silicalite Zeolite. Chemie Ingenieur Technik. 95(11):1768-1776. https://doi.org/10.1002/cite.20230000817681776951

    Separation of an aqueous mixture of 6-kestose/sucrose with zeolites: A molecular dynamics simulation

    Full text link
    [EN] Extra-large pore zeolites are a small subset (21) among the whole list of 253 zeolites available. The discovery of new low-glycemic sugars is very attractive as new healthy additives in the food field. This is the case of the 6-kestose. In the present case, it appears in a mixture in aqueous solution together with sucrose, the separation of the mixture being necessary. For this, we have focused on using certain zeolites with adequate pore sizes that allow the separation of this mixture, considering that since the molecular size of 6-kestose is greater than sucrose, it is necessary to promote the sorption of the latter, so that the first can be purified. After a computational screening of micropores of the 253 IZA zeolites, 11 zeolites were selected. Of these, 3 extra-large pore zeolites (AET, DON, ETR) have been proposed, which were analyzed in-depth through a molecular dynamics study considering the external surface. The results show that DON presents the most promising theoretical results for a selective sucrose/6-kestose separation.We thank MICINN of Spain for funding through projects RTI2018101784-B-I00, RTI2018-101033-B-I00, SEV-2016-0683 as well as ASICUPV and CESGA for computational facilities. IBL and PGI gratefully acknowledge CSIC for a JAE-Intro fellowship. AM thanks Generalitat Valenciana for the predoctoral fellowship GRISOLIAP/2019/084.Bolaño Losada, I.; Grobas-Illobre, P.; Misturini, A.; Polaina, J.; Seminóvski, Y.; Sastre Navarro, GI. (2021). Separation of an aqueous mixture of 6-kestose/sucrose with zeolites: A molecular dynamics simulation. Microporous and Mesoporous Materials. 319:1-10. https://doi.org/10.1016/j.micromeso.2021.111031S11031

    Isotopic H/D exchange on graphenes. A combined experimental and theoretical study

    Full text link
    [EN] Adsorption of H-2/D-2 on graphene (G), graphene oxide (GO), single walled carbon nanotube (SWCNT), N-doped graphene [(N)G], and a sample of active carbon (C) has led to the detection of HD, indicating dissociative chemisorption of hydrogen on the surface of the material. The amount of HD detected follows the order G > SWCNT > GO similar to (N)G similar to C, G giving about five-fold higher H-2/D-2 adsorption and HD exchange level than SWCNT and about ten-fold larger values than that of the other samples. Quantum-chemistry calculations modeling a carbon atom vacancy on a G cluster estimates an activation barrier for H-2 dissociation of ca. 84 kJ/mol for a mechanism involving under coordinated carbon atoms at the defect site.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa SEV-2016-0267 and CTQ2015-69153-C2-R1) and Generalitat Valenciana (Prometeo 2013/014) is gratefully acknowledged. G. S. thanks the Scientific Division of SGAI CSIC for computing facilities.Sastre Navarro, GI.; Forneli Rubio, MA.; Almasan, V.; Parvulescu, VI.; García Gómez, H. (2017). Isotopic H/D exchange on graphenes. A combined experimental and theoretical study. Applied Catalysis A General. 547:52-59. https://doi.org/10.1016/j.apcata.2017.08.018S525954

    Synthesis of High-Silica Erionite Driven by Computational Screening of Hypothetical Zeolites

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Chemistry of Materials, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.chemmater.9b01229.[EN] A hypothetical zeolite framework was selected from a database of hypothetical structures and adapted based on the structural features relevant for deNOx and MTO catalysis. To attempt the realization of this structure, a computational energy-based approach was applied to select relevant organic structure directing agent (OSDA) molecules with large OSDA-zeolite stabilization energies, leading to the selection of three OSDAs (OSDA1, OSDA2, and OSDA3) as potential candidates for the synthesis of the hypothetical zeolite (Hypo#1). Instead of Hypo#1, erionite (ERI) was found to dominate the experimental product outcome when potassium was used as a mineralizing agent. In the case of OSDA3, a novel high-silica ERI was found. The different ERI products were characterized, intergrowth structures ruled out, and special attention was paid to the compositional and morphological features arising from the use of the different OSDAs. In the specific high-Si product obtained using OSDA3, a distinct tubular to prismatic crystal morphology could be seen. Theoretical stabilization energies calculated for potentially competing phases (Hypo#1, ERI, offretite (OFF), and chabazite (CHA) among others) could be used to rationalize the experimental outcome to a certain extent, but our results also show that only considering zeolite-OSDA interaction is probably not sufficient to realize hypothetical frameworks, especially for Al-containing zeolites where alkali ions play an important role during crystallization.The authors thank Haldor Topsoe A/S and Innovation Fund Denmark for financial support under the Industrial PhD programe (case no. 1355-0174B). We thank MINECO of Spain for funding (SEV-2016-0683 and RTI2018-101033-B-100) and ASIC-UPV for the use of computational facilities. We also thank Prof. M. M. J. Treacy for assistance with the Database of Prospective Zeolite Structures.Boruntea, C.; Sastre Navarro, GI.; Lundegaard, LF.; Corma Canós, A.; Vennestrom, PNR. (2019). Synthesis of High-Silica Erionite Driven by Computational Screening of Hypothetical Zeolites. Chemistry of Materials. 31(22):9268-9276. https://doi.org/10.1021/acs.chemmater.9b01229S92689276312

    Evidence of Hydronium Formation in Water-Chabazite Zeolite Using Inelastic Neutron Scattering Experiments and ab Initio Molecular Dynamics Simulations

    Full text link
    [EN] A combined study of inelastic neutron scattering and ab initio molecular dynamics simulations has been performed in order to study the water-acid site interaction in zeolite chabazite with a ratio Si/Al = 16 that corresponds to 2 protons/uc with two different water coverages with the number of water molecules being lower and higher than that of proton sites. These results have provided a clear picture of the water-acid site interaction, and it has been demonstrated that there are two regimens of water adsorption, which depend on the water loading. (i) At low water coverage (water/acid site similar to 0.5), the main interactions between water and the zeolitic acid sites are established through hydrogen bond and there is no proton transference to water. (ii) At relatively high water loading (water/acid site similar to 3), the clustering of water molecules and hydronioum cations formed by the complete transference of the zeolitic proton to the water molecules has been observed. The formation of water-hydronium clusters interacting with oxygen atoms of the zeolite framework provides the stabilization energy needed for the protonation of water molecules confined in the cavities of chabazite. These results are the experimental evidence obtained from INS of proton transfer from the zeolitic acid site and the hydronium formation and are in agreement with a previous computational study (Phys. Chem. Chem. Phys. 2009, 11, 1702-1712) and very recent solid state NMR spectroscopy studies (J. Am. Chem. Soc. 2019, 141, 3444-3455). The inspection of the low energy bands (translational and optic modes) and librational bands of the experimental results allows obtaining information about the Hbond network of the hydronium-water clusterWe thank MICINN of Spain for funding through Projects RTI2018-101784-B-I00 and SEV-2016-0683. The authors thank the ILL for neutron beam-time allocation (experiment 7-05-456) and the ILL C-Lab for support. A. Moraleda is acknowledged for the synthesis of CHA-16. G.S. and T.L. thank the ILL for the provision of Contract SRH/GRI/AS-15/222 and a Ph.D. contract.Jiménez-Ruiz, M.; Gahle, DS.; Lemishko, T.; Valencia Valencia, S.; Sastre Navarro, GI.; Rey Garcia, F. (2020). Evidence of Hydronium Formation in Water-Chabazite Zeolite Using Inelastic Neutron Scattering Experiments and ab Initio Molecular Dynamics Simulations. The Journal of Physical Chemistry C. 124(9):5436-5443. https://doi.org/10.1021/acs.jpcc.9b11081S54365443124

    The importance of T ... T ... T angles in the feasibility of zeolites

    Full text link
    The database of prospective zeolites (www. hypotheticalzeolites.net) has been screened in search of feasible zeolites. Previous criteria of zeolite feasibil- ity have been reviewed, based on descriptors such as energy, density, average and distribution of ring sizes, and more importantly that of Li et al. (LID criteria) presented recently [Angew. Chem. Int. Ed. 2013, 52, 1673], based on Si O, O ... O, and Si ... Si distances of SLC-minimised struc- tures. In spite of the still large number of feasible zeolites according to this and other criteria, a number of research- ers wonder why there are so many feasible and so few synthesised zeolites. Without answering this difficult question, a new criteria is proposed in this study based on the fact that T ... T ... T angles (T is tetrahedral atom) show spe- cific ranges of values depending on the ring size to which they belong. Based on improved definitions to count and enumerate rings in zeolites, and with data from the IZA database, we introduce the TTT criteria, which we propose to use after the LID criteria, to further narrow the space of feasible zeolites.We thank ASIC computational centre of UPV for making available their computational resources. UPV is acknolwdeged by funding through project PAID-05-12. G. S. thanks the Spanish government for the provision of Severo Ochoa project (SEV 2012-0267) and MAT2012-31657 project. Professors Mike Treacy and Christian Baerlocher are gratefully acknowledged for useful discussions. Laurent Baumes is thanked by initial training with the database.Liu, X.; Valero Cubas, S.; Argente Villaplana, E.; Botti Navarro, VJ.; Sastre Navarro, GI. (2015). The importance of T ... T ... T angles in the feasibility of zeolites. Zeitschrift fur Kristallographie. Crystalline materials. 230(5):291-299. https://doi.org/10.1515/zkri-2014-1801S291299230

    ITQ-39 zeolite, an efficient catalyst for the conversion of low value naphtha fractions into diesel fuel: The role of pore size on molecular diffusion and reactivity

    Full text link
    [EN] ITQ-39, a multipore zeolite with interconnected 12- and 10-ring channel systems, effectively catalyzes the alkylation of two low value naphtha fractions for the production of diesel range alkylaromatics. A catalytic and molecular dynamics study allows us to conclude that its higher selectivity to the desired diesel fraction and, especially, its longer catalyst life as compared to beta or MCM-22, conventionally used as heterogeneous alkylation catalysts, are due to the combined contribution of its small nano-sized crystallites, moderate Bronsted acidity and unique framework topology. The small diffusion coefficients obtained for alkylaromatics on ITQ-39 as compared to those corresponding to the large pore beta zeolite evidence the significant diffusional problems of most of the reactants and products through the channels of the ITQ-39 structure. Thus, alkylation reactions on this zeolite seem to occur mainly on the most external acid sites (external surface, pore mouths), whereas the zeolite structure contributes positively by preventing undesired reactions to occur, which would result in lower selectivity to the monoalkylated products and in a faster catalyst deactivation.Financial support by the Spanish Government-MINECO through "Severo Ochoa" (SEV 2012-0267), Consolider Ingenio 2010-Multicat, MAT2012-37160 and MAT2012-31657, by the European Union through ERC-AdG-2014-671093 - SynCatMatch and by the Generalitat Valenciana through the Prometeo program (PROME-TEOII/2013/011) is acknowledged. Repsol is thanked for financial support and permission to publish these results. G.S. thanks ASIC-UPV for computing time. The Electron Microscopy Service of the UPV is acknowledged for their help in samples characterization.Martínez Armero, ME.; Moliner Marin, M.; Sastre Navarro, GI.; Rey Garcia, F.; Martínez, C.; Corma Canós, A. (2016). ITQ-39 zeolite, an efficient catalyst for the conversion of low value naphtha fractions into diesel fuel: The role of pore size on molecular diffusion and reactivity. Journal of Catalysis. 333:127-138. https://doi.org/10.1016/j.jcat.2015.10.024S12713833

    Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes

    Full text link
    The combination of different experimental techniques, such as solid C-13 and H-1 magic-angle spinning NMR spectroscopy, fluorescence spectroscopy and powder X-ray diffraction, together with theoretical calculations allows the determination of the unique structure directing the role of the bulky aromatic proton sponge 1,8-bis(dimethylamino)naphthalene (DMAN) towards the extra-large-pore ITQ-51 zeolite through supra-molecular assemblies of those organic molecules.This work has been supported by the Spanish Government through Consolider Ingenio 2010-Multicat, the 'Severo Ochoa Programme' (SEV 2012-0267), MAT2012-37160; UPV through PAID-06-11 (no. 1952); the Swedish Research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA).Martínez Franco, R.; Sun, J.; Sastre Navarro, GI.; Yun, Y.; Zou, X.; Moliner Marin, M.; Corma Canós, A. (2014). Supra-molecular assembly of aromatic proton sponges to direct the crystallization of extra-large-pore zeotypes. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences. 470:1-13. https://doi.org/10.1098/rspa.2014.0107S113470Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., & Davis, M. E. (1996). A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 381(6580), 295-298. doi:10.1038/381295a0Wagner, P., Yoshikawa, M., Tsuji, K., Davis, M. E., Wagner, P., Lovallo, M., & Taspatsis, M. (1997). CIT-5: a high-silica zeolite with 14-ring pores. Chemical Communications, (22), 2179-2180. doi:10.1039/a704774fBurton, A., Elomari, S., Chen, C.-Y., Medrud, R. C., Chan, I. Y., Bull, L. M., … Vittoratos, E. S. (2003). SSZ-53 and SSZ-59: Two Novel Extra-Large Pore Zeolites. Chemistry - A European Journal, 9(23), 5737-5748. doi:10.1002/chem.200305238Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572gSun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652Kubota, Y., Helmkamp, M. M., Zones, S. I., & Davis, M. E. (1996). Properties of organic cations that lead to the structure-direction of high-silica molecular sieves. Microporous Materials, 6(4), 213-229. doi:10.1016/0927-6513(96)00002-8Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909Gómez-Hortigüela, L., López-Arbeloa, F., Corà, F., & Pérez-Pariente, J. (2008). Supramolecular Chemistry in the Structure Direction of Microporous Materials from Aromatic Structure-Directing Agents. Journal of the American Chemical Society, 130(40), 13274-13284. doi:10.1021/ja8023725Gómez-Hortigüela, L., Hamad, S., López-Arbeloa, F., Pinar, A. B., Pérez-Pariente, J., & Corà, F. (2009). Molecular Insights into the Self-Aggregation of Aromatic Molecules in the Synthesis of Nanoporous Aluminophosphates: A Multilevel Approach. Journal of the American Chemical Society, 131(45), 16509-16524. doi:10.1021/ja906105xStaab, H. A., & Saupe, T. (1988). ?Proton Sponges? and the Geometry of Hydrogen Bonds: Aromatic Nitrogen Bases with Exceptional Basicities. Angewandte Chemie International Edition in English, 27(7), 865-879. doi:10.1002/anie.198808653Leslie, M., & Gillan, N. J. (1985). The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. Journal of Physics C: Solid State Physics, 18(5), 973-982. doi:10.1088/0022-3719/18/5/005Catlow, C. R. A., & Cormack, A. N. (1987). Computer modelling of silicates. International Reviews in Physical Chemistry, 6(3), 227-250. doi:10.1080/01442358709353406Gale, J. D. (1997). GULP: A computer program for the symmetry-adapted simulation of solids. Journal of the Chemical Society, Faraday Transactions, 93(4), 629-637. doi:10.1039/a606455hGale, J. D., & Rohl, A. L. (2003). The General Utility Lattice Program (GULP). Molecular Simulation, 29(5), 291-341. doi:10.1080/0892702031000104887Kiselev, A. V., Lopatkin, A. A., & Shulga, A. A. (1985). Molecular statistical calculation of gas adsorption by silicalite. Zeolites, 5(4), 261-267. doi:10.1016/0144-2449(85)90098-3Sastre, G., Lewis, D. W., & Catlow, C. R. A. (1996). Structure and Stability of Silica Species in SAPO Molecular Sieves. The Journal of Physical Chemistry, 100(16), 6722-6730. doi:10.1021/jp953362fYanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51-57. doi:10.1016/j.cplett.2004.06.011Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., & Hirao, K. (2004). A long-range-corrected time-dependent density functional theory. The Journal of Chemical Physics, 120(18), 8425-8433. doi:10.1063/1.1688752Schäfer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97(4), 2571-2577. doi:10.1063/1.463096Wozniak, K., He, H., Klinowski, J., Jones, W., & Barr, T. L. (1995). ESCA, Solid-State NMR, and X-ray Diffraction Monitor the Hydrogen Bonding in a Complex of 1,8-Bis(dimethylamino)naphthalene with 1,2-Dichloromaleic Acid. The Journal of Physical Chemistry, 99(40), 14667-14677. doi:10.1021/j100040a014Rodriguez, I., Sastre, G., Corma, A., & Iborra, S. (1999). Catalytic Activity of Proton Sponge: Application to Knoevenagel Condensation Reactions. Journal of Catalysis, 183(1), 14-23. doi:10.1006/jcat.1998.2380Wozniak, K., He, H., Klinowski, J., Barr, T. L., & Milart, P. (1996). ESCA and Solid-State NMR Studies of Ionic Complexes of 1,8-Bis(dimethylamino)naphthalene. The Journal of Physical Chemistry, 100(27), 11420-11426. doi:10.1021/jp9537320Wo?naik, K., Krygowski, T. M., Pawlak, D., Kolodziejski, W., & Grech, E. (1997). Solid-state NMR and x-ray diffraction studies of ionic complex of 1,8-bis(dimethylamino)naphthalene (DMAN) with picrolonic acid. Journal of Physical Organic Chemistry, 10(11), 814-824. doi:10.1002/(sici)1099-1395(199711)10:113.0.co;2-
    corecore