12 research outputs found

    The journey from proton to gamma knife

    No full text

    Teknisk genomförbarhet av en intensifierad absorptionsprocess för bioenergi med koldioxidavskiljning och -lagring (BECCS)

    No full text
    This project aims to evaluate the technical feasibility of an absorption process for carbon capture and storage (CCS). Currently, the CCS process commonly used in the industry is energy and cost-intensive, making its large-scale development a difficult task. The process under evaluation in this project is labeled as an intensified CCS process as it is more energy-efficient, theoretically, compared to the current standard process. The intensified process is based on absorption with aqueous K2CO3/KHCO3 followed by cristallization of KHCO3. The project aims to show the technical feasibility of two parts of the intensified process, the cooling crystallization in the reactor and the regeneration of carbon dioxide through calcination. The cooling crystallization was conducted at different cooling rates for two different solution compositions, while the calcination was conducted the same for all tests. Microscopic images were utilized to examine the relationship between cooling rates, solution composition, crystal size, and clustering. Thermogravimetric analysis was used to simulate the calcination and to analyze the crystals' decomposition and purity. The report concludes that none clustered selective crystallization of potassium bicarbonate and the total regeneration of carbon dioxide through calcination were achieved. A conclusive correlation between cooling rates and crystal yields could not be proven. And the relationship between crystal size and cooling rates substantially deviated from what was expected. Based on the results the intensified process is deemed technically feasible.Syftet med detta projekt Ă€r att utvĂ€rdera den tekniska genomförbarheten av en “carbon capture and storage” (CCS) absorptionsprocess. CCS-processen som nuvarande förekommer i industrin Ă€r bĂ„de energi- och kostnadskrĂ€vande, detta förhindrar möjligheten till vidare uppskalning. Processen som utvĂ€rderas i detta projekt kallas för en intensifierad CCS-process vilket innebĂ€r att den Ă€r teoretiskt mer energieffektiv jĂ€mfört med nuvarande standardprocess. Den intensifierade processen Ă€r baserad pĂ„ absorption med en K2CO3/KHCO3 vattenlösning följt av en kristallisation av KHCO3. Projektet Ă€mnar att visa den tekniska genomförbarheten av specifikt tvĂ„ delar av den intensifierade processen, kylningskristalliseringen i reaktorn samt regenereringen av koldioxid genom kalcinering. Kylningskristalliseringen genomfördes med olika kylningshastigheter för tvĂ„ olika lösningskompositioner medan kalcineringen utfördes likadant för samtliga tester. Mikroskopiska bilder nyttjades för att undersöka förhĂ„llandet mellan kylningshastigheten, lösningens sammansĂ€ttning, kristallstorlek och kristallkluster. Termogravimetrisk analys anvĂ€ndes för att efterlikna kalcineringen samt analysera kristallernas sönderdelning och renhet. Rapporten faststĂ€ller att selektiv kristallisering av kaliumbikarbonat uppnĂ„ddes utan signifikant kluster. En definitiv korrelation mellan kylningshastighet och kristallutbyte kunde ej pĂ„visas. FörhĂ„llandet mellan kristallstorlek och kylningshastighet avvek betydande frĂ„n vad som förvĂ€ntades. Baserat pĂ„ resultaten bedömdes den intensifierade processen vara tekniskt genomförbar

    Experimental Characterisation of a Fresnel Lens Photovoltaic Concentrating System

    Get PDF
    AbstractAn extensive indoor experimental characterisation program to investigate the heat loss from a point focus Fresnel lens PV Concentrator (FPVC) with a concentration ratio of 100× was performed for a range of simulated solar radiation intensities between 200 and 1000W/m2, different ambient air temperatures, and natural and forced convection. From the experimental program it was found that the solar cell temperature increased proportionally with the increase in simulated solar radiation for all experimental tests, indicating that conductive and convective heat transfer were significantly larger than the long wave radiative heat transfer within and from the FPVC system. For the simulated worst case scenario, in which the FPVC system was tested under a simulated solar radiation intensity of 1000W/m2 and ambient air temperature of 50°C with no forced convection, the predicted silicon solar cell efficiency in the FPVC system was reduced to approximately half that at standard test conditions
    corecore