46,610 research outputs found

    High contrast optical modulation by surface acoustic waves

    Full text link
    Numerical Calculations are employed to study the modulation of light by surface acoustic waves (SAWs) in photonic band gap (PBG) structures. The on/off contrast ratio in PBG switch based on optical cavity is determined as a function of the SAW induced dielectric modulation. We show that these structures exhibit high contrast ratios even for moderate acousto-optic couplingComment: 7 manuscript pages and 5 figures; submitted to Applied Physics Letters on April 24, 200

    Some generating functions for q-polynomials

    Full text link
    We obtain q-analogues of the Sylvester, Ces\`aro, Pasternack, and Bateman polynomials. We also derive generating functions for these polynomials.Comment: 10 page

    Gravitational waves in the generalized Chaplygin gas model

    Full text link
    The consequences of taking the generalized Chaplygin gas as the dark energy constituent of the Universe on the gravitational waves are studied and the spectrum obtained from this model, for the flat case, is analyzed. Besides its importance for the study of the primordial Universe, the gravitational waves represent an additional perspective (besides the CMB temperature and polarization anisotropies) to evaluate the consistence of the different dark energy models and establish better constraints to their parameters. The analysis presented here takes this fact into consideration to open one more perspective of verification of the generalized Chapligin gas model applicability. Nine particular cases are compared: one where no dark energy is present; two that simulate the Λ\Lambda-CDM model; two where the gas acts like the traditional Chaplygin gas; and four where the dark energy is the generalized Chaplygin gas. The different spectra permit to distinguish the Λ\Lambda-CDM and the Chaplygin gas scenarios.Comment: Latex file, 9 pages, 11 figures eps forma

    Stochastic Model in the Kardar-Parisi-Zhang Universality With Minimal Finite Size Effects

    Full text link
    We introduce a solid on solid lattice model for growth with conditional evaporation. A measure of finite size effects is obtained by observing the time invariance of distribution of local height fluctuations. The model parameters are chosen so that the change in the distribution in time is minimum. On a one dimensional substrate the results obtained from the model for the roughness exponent α\alpha from three different methods are same as predicted for the Kardar-Parisi-Zhang (KPZ) equation. One of the unique feature of the model is that the α\alpha as obtained from the structure factor S(k,t)S(k,t) for the one dimensional substrate growth exactly matches with the predicted value of 0.5 within statistical errors. The model can be defined in any dimensions. We have obtained results for this model on a 2 and 3 dimensional substrates.Comment: 8 pages, 7 figures, accepted in Phys. Rev.

    Is Λ\LambdaCDM an effective CCDM cosmology?

    Full text link
    We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating Λ\LambdaCDM cosmology with just one dynamical free parameter. This kind of scenario includes the creation cold dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a particular case and also provides a natural reduction of the dark sector since the vacuum component is not needed to accelerate the Universe. The new cosmic scenario is equivalent to Λ\LambdaCDM both at the background and perturbative levels and the associated creation process is also in agreement with the universality of the gravitational interaction and equivalence principle. Implicitly, it also suggests that the present day astronomical observations cannot be considered the ultimate proof of cosmic vacuum effects in the evolved Universe because Λ\LambdaCDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new references and typo correction

    Studying light propagation in a locally homogeneous universe through an extended Dyer-Roeder approach

    Full text link
    Light is affected by local inhomogeneities in its propagation, which may alter distances and so cosmological parameter estimation. In the era of precision cosmology, the presence of inhomogeneities may induce systematic errors if not properly accounted. In this vein, a new interpretation of the conventional Dyer-Roeder (DR) approach by allowing light received from distant sources to travel in regions denser than average is proposed. It is argued that the existence of a distribution of small and moderate cosmic voids (or "black regions") implies that its matter content was redistributed to the homogeneous and clustered matter components with the former becoming denser than the cosmic average in the absence of voids. Phenomenologically, this means that the DR smoothness parameter (denoted here by αE\alpha_E) can be greater than unity, and, therefore, all previous analyses constraining it should be rediscussed with a free upper limit. Accordingly, by performing a statistical analysis involving 557 type Ia supernovae (SNe Ia) from Union2 compilation data in a flat Λ\LambdaCDM model we obtain for the extended parameter, αE=1.26−0.54+0.68\alpha_E=1.26^{+0.68}_{-0.54} (1σ1\sigma). The effects of αE\alpha_E are also analyzed for generic Λ\LambdaCDM models and flat XCDM cosmologies. For both models, we find that a value of αE\alpha_E greater than unity is able to harmonize SNe Ia and cosmic microwave background observations thereby alleviating the well-known tension between low and high redshift data. Finally, a simple toy model based on the existence of cosmic voids is proposed in order to justify why αE\alpha_E can be greater than unity as required by supernovae data.Comment: 5 pages, 2 figures. Title modified, results unchanged. It matches version published as a Brief Report in Phys. Rev.

    Coupling vortex dynamics with collective excitations in Bose-Einstein Condensates

    Full text link
    Here we analyze the collective excitations as well as the expansion of a trapped Bose-Einstein condensate with a vortex line at its center. To this end, we propose a variational method where the variational parameters have to be carefully chosen in order to produce reliable results. Our variational calculations agree with numerical simulations of the Gross-Pitaevskii equation. The system considered here turns out to exhibit four collective modes of which only three can be observed at a time depending of the trap anisotropy. We also demonstrate that these collective modes can be excited using well established experimental methods such as modulation of the s-wave scattering length
    • …
    corecore