48,803 research outputs found

    Asteroseismology and Magnetic Cycles

    Full text link
    Small cyclic variations in the frequencies of acoustic modes are expected to be a common phenomenon in solar-like pulsators, as a result of stellar magnetic activity cycles. The frequency variations observed throughout the solar and stellar cycles contain information about structural changes that take place inside the stars as well as about variations in magnetic field structure and intensity. The task of inferring and disentangling that information is, however, not a trivial one. In the sun and solar-like pulsators, the direct effect of the magnetic field on the oscillations might be significantly important in regions of strong magnetic field (such as solar- / stellar-spots), where the Lorentz force can be comparable to the gas-pressure gradient. Our aim is to determine the sun- / stellar-spots effect on the oscillation frequencies and attempt to understand if this effect contributes strongly to the frequency changes observed along the magnetic cycle. The total contribution of the spots to the frequency shifts results from a combination of direct and indirect effects of the magnetic field on the oscillations. In this first work we considered only the indirect effect associated with changes in the stratification within the starspot. Based on the solution of the wave equation and the variational principle we estimated the impact of these stratification changes on the oscillation frequencies of global modes in the sun and found that the induced frequency shifts are about two orders of magnitude smaller than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and Asteroseismology, to be published on 3 December 2012 at Astronomische Nachrichten 333, No. 10, 1032-103

    Socio-economic studies with social accounting and sociodemographic matrices : an application to Portugal.

    Get PDF
    In looking for empirical evidence about the activity of countries, a proposal is made for studying (measuring and modelling) the activity of countries through the use of Social Accounting Matrices (SAMs) and Socio-Demographic Matrices (SDMs). SAMs and SDMs are presented as tools that have specific features for conducting studies in several different areas, as well as for supporting policy decision processes. Based on methodological principles that are derived mainly from the works of Richard Stone, emphasis is placed on the desirability of working in a matrix format, which includes not only people (SDM), but also, at the same time, activities, products, factors of production and institutions (SAM). This is considered to be a way of capturing the relevant network of linkages and the corresponding multiplier effects, which can be used for the subsequent modelling of the activity of the countries studied. A method will be proposed for the construction of these matrices. In the case of the SAMs, it is proposed that their design and construction should adopt, at least as their starting point, the latest version of the System of National Accounts (2008 SNA) and the corresponding results of its adoption/adaptation by different countries. The exposition of this proposal is accompanied by an example applied to Portugal.Financial support provided by FCT (Fundação para a Ciência e a Tecnologia)Portugal for the research and writing of this article, which forms part of the Strategic Project for 2011-13 (PEst- OE/EGE/UI0436/2011)

    From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems

    Full text link
    Decaying vacuum cosmological models evolving smoothly between two extreme (very early and late time) de Sitter phases are capable to solve or at least to alleviate some cosmological puzzles, among them: (i) the singularity, (ii) horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem. Our basic aim here is to discuss how the coincidence problem based on a large class of running vacuum cosmologies evolving from de Sitter to de Sitter can also be mollified. It is also argued that even the cosmological constant problem become less severe provided that the characteristic scales of the two limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new references adde

    The role of pressure anisotropy in the turbulent intracluster medium

    Full text link
    In low-density plasma environments, such as the intracluster medium (ICM), the Larmour frequency is much larger than the ion-ion collision frequency. In such a case, the thermal pressure becomes anisotropic with respect to the magnetic field orientation and the evolution of the turbulent gas is more correctly described by a kinetic approach. A possible description of these collisionless scenarios is given by the so-called kinetic magnetohydrodynamic (KMHD) formalism, in which particles freely stream along the field lines, while moving with the field lines in the perpendicular direction. In this way a fluid-like behavior in the perpendicular plane is restored. In this work, we study fast growing magnetic fluctuations in the smallest scales which operate in the collisionless plasma that fills the ICM. In particular, we focus on the impact of a particular evolution of the pressure anisotropy and its implications for the turbulent dynamics of observables under the conditions prevailing in the ICM. We present results from numerical simulations and compare the results which those obtained using an MHD formalism.Comment: 7 pages, 14 figures, Journal of Physics: Conference Serie

    Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory

    Full text link
    We study the Hubbard model using the Cellular Dynamical Mean-Field Theory (CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic details of CDMFT with the Hirsch-Fye QMC method for the solution of the self-consistently embedded quantum cluster problem. We use the one- and two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC particularly for small clusters by comparing with the exact results and also with other quantum cluster methods. We calculate single-particle Green's functions and self-energies on small clusters to study their size dependence in one- and two-dimensions.Comment: 14 pages, 18 figure

    Diffraction and an infrared finite gluon propagator

    Get PDF
    We discuss some phenomenological applications of an infrared finite gluon propagator characterized by a dynamically generated gluon mass. In particular we compute the effect of the dynamical gluon mass on pppp and pˉp{\bar{p}}p diffractive scattering. We also show how the data on γp\gamma p photoproduction and hadronic γγ\gamma \gamma reactions can be derived from the pppp and pˉp\bar{p}p forward scattering amplitudes by assuming vector meson dominance and the additive quark model.Comment: 4 pages, 7 figures, added references and figures, changed structure. Contribution to Proceedings of XVIIIth Reuniao de Trabalho sobre Interacoes Hadronicas, Sao Paulo, Brazil, 22-24 May, 200

    Light elements in stars with exoplanets

    Full text link
    It is well known that stars orbited by giant planets have higher abundances of heavy elements when compared with average field dwarfs. A number of studies have also addressed the possibility that light element abundances are different in these stars. In this paper we will review the present status of these studies. The most significant trends will be discussed.Comment: 10 pages, 6 figures. Submitted to the proceedings of IAU symposium 268: Light elements in the universe

    Shot Noise in Magnetic Tunnel Junctions: Evidence for Sequential Tunneling

    Full text link
    We report the experimental observation of sub-Poissonian shot noise in single magnetic tunnel junctions, indicating the importance of tunneling via impurity levels inside the tunnel barrier. For junctions with weak zero-bias anomaly in conductance, the Fano factor (normalized shot noise) depends on the magnetic configuration being enhanced for antiparallel alignment of the ferromagnetic electrodes. We propose a model of sequential tunneling through nonmagnetic and paramagnetic impurity levels inside the tunnel barrier to qualitatively explain the observations.Comment: 5 pages, 5 figure
    • …
    corecore