1,301 research outputs found

    CO041. DISLIPIDEMIA ASSOCIADA AO TRATAMENTO COM INIBIDORES DA M-TOR

    Get PDF

    Carbohydrate Intake in Early Childhood and Body Composition and Metabolic Health: Results from the Generation R Study

    Get PDF
    High sugar intake in childhood has been linked to obesity. However, the role of macronutrient substitutions and associations with metabolic health remain unclear. We examined associations of carbohydrate intake and its subtypes with body composition and metabolic health among 3573 children participating in a population-based cohort in the Netherlands. Intake of total carbohydrate, monosaccharides and disaccharides, and polysaccharides at age 1 year was assessed with a food-frequency questionnaire. We repeatedly measured children’s height and weight to calculate BMI between their ages of 1 and 10 years. At ages 6 and 10 years, fat and fat-free mass were measured with dual-energy X-ray-absorptiometry and blood concentrations of triglycerides, cholesterol, and insulin were obtained. For all outcomes, we calculated age and sexspecific SD-scores. In multivariable-adjusted linear mixed models, we found no associations of intake of carbohydrates or its subtypes with children’s BMI or body composition. A higher intake of monosaccharides and disaccharides was associated with higher triglyceride concentrations (0.02 SDS per 10 g/day, 95% CI: 0.01, 0.04). Higher monosaccharide and disaccharide intake was also associated with lower HDL-cholesterol (−0.03 SDS, 95% CI: −0.04; −0.01), especially when it replaced polysaccharides. Overall, our findings suggest associations of higher monosaccharide and disaccharide intake in early childhood with higher triglyceride and lower HDL-choleste

    Hydrothermal synthesis to water-stable luminescent carbon dots from acerola fruit for photoluminescent composites preparation and its application as sensors

    Get PDF
    Carbon dots (C-dots) possess the attractive properties of high stability, low toxicity, good water solubility, simple synthetic routes as well as size and excitation-dependent photoluminescence (PL).The aim of this work was to synthesize photoluminescent C-dots by hydrothermal method using acerola fruit (Malpighiaemarginata) as a row material, since this fruit contains large number of organic molecules. Studies about the optimal synthesis conditions were performed, where these organic molecules were converted into C-dots by hydrothermal carbonization at 180 ÂșC for 18 h. The C-dots exhibited a green emission light at 459 nm when excited under UV-light (λ ex= 370 nm). These nanomaterials were also successfully used to prepare C-dots/poly (vinyl alcohol) luminescent composites (C-dots/PVA). Both C-dots and C-dots/PVA composite films were investigated by using colorimetric visual sensor for Fe3+ metal ions detection. The results show that the prepared C-dots and C-dots/poly presented strong green emission light. The emission spectra of above materials were quenched in the presence of Fe3+ ions. Thus, highly specific “turn off” fluorescence sensing of Fe3+ was achieved using fluorescent C-dots. Regarding, this work describe that the polymeric films as sensors of metallic ions in aqueous solution appears as a new perspectives to design new composite materials22

    Rapid optimization of chromatography operating conditions using a nano- liter scale column on a microfluidic chip with integrated pneumatic valves and optical sensors

    Get PDF
    Purification of monoclonal antibodies (mAbs) is traditionally achieved by chromatographic separations, which are very robust but require time-consuming optimization on a case-by-case, particularly if a non-affinity step is used. In this context, multimodal chromatography has been explored as a versatile and cost-effective alternative to the established affinity step employed for capturing mAbs. However, selective capture/polishing of a target mAb using such multimodal ligands comes with the need for extensive and time-consuming optimization, due to the multitude of interactions that can be simultaneously promoted in the ligand. In this work, we developed a novel microfluidic platform comprising multimodal chromatography beads inside micro-columns for rapid screening of operating conditions. Sequential liquid insertion in the device was achieved by using integrated pneumatic valves and the chromatographic assays were combined with a signal acquisition module for on-chip fluorescence measurements. Please click Additional Files below to see the full abstract

    Thermodynamics of charged and rotating black strings

    Full text link
    We study thermodynamics of cylindrically symmetric black holes. Uncharged as well as charged and rotating objects have been discussed. We derive surface gravity and hence the Hawking temperature and entropy for all these cases. We correct some results in the literature and present new ones. It is seen that thermodynamically these black configurations behave differently from spherically symmetric objects

    Magneto-optical trapping of bosonic and fermionic neon isotopes and their mixtures: isotope shift of the ^3P_2 to ^3D_3 transition and hyperfine constants of the ^3D_3 state of Ne-21

    Full text link
    We have magneto-optically trapped all three stable neon isotopes, including the rare Ne-21, and all two-isotope combinations. The atoms are prepared in the metastable ^3P_2 state and manipulated via laser interaction on the ^3P_2 to ^3D_3} transition at 640.2nm. These cold (T = 1mK) and environmentally decoupled atom samples present ideal objects for precision measurements and the investigation of interactions between cold and ultracold metastable atoms. In this work, we present accurate measurements of the isotope shift of the ^3P_2 to ^3D_3 transition and the hyperfine interaction constants of the ^3D_3 state of Ne-21. The determined isotope shifts are (1625.9\pm0.15)MHz for Ne-20 to Ne-22, (855.7\pm1.0)MHz for Ne-20 to Ne-21, and (770.3\pm1.0)MHz for Ne-21 to Ne-22. The obtained magnetic dipole and electric quadrupole hyperfine interaction constants are A(^3D_3)= (-142.4\pm0.2)MHz and B(^3D_3)=(-107.7\pm1.1)MHz, respectively. All measurements give a reduction of uncertainty by about one order of magnitude over previous measurements

    Topological Charged Black Holes in High Dimensional Spacetimes and Their Formation from Gravitational Collapse of a Type II Fluid

    Full text link
    Topological charged black holes coupled with a cosmological constant in R2×XD−2R^{2}\times X^{D-2} spacetimes are studied, where XD−2X^{D-2} is an Einstein space of the form (D−2)RAB=k(D−3)hAB{}^{(D-2)}R_{AB} = k(D-3) h_{AB}. The global structure for the four-dimensional spacetimes with k=0k = 0 is investigated systematically. The most general solutions that represent a Type IIII fluid in such a high dimensional spacetime are found, and showed that topological charged black holes can be formed from the gravitational collapse of such a fluid. When the spacetime is (asymptotically) self-similar, the collapse always forms black holes for k=0,−1k = 0, -1, in contrast to the case k=1k = 1, where it can form either balck holes or naked singularities.Comment: 14 figures, to appear in Phys. Rev.

    Spontaneous emission between an unusual pair of plates

    Full text link
    We compute the modification in the spontaneous emission rate for a two-level atom when it is located between two parallel plates of different nature: a perfectly conducting plate (ϔ→∞)(\epsilon\to \infty) and an infinitely permeable one (Ό→∞)(\mu\to \infty). We also discuss the case of two infinitely permeable plates. We compare our results with those found in the literature for the case of two perfectly conducting plates.Comment: latex file 4 pages, 4 figure

    Limiting Carleman weights and anisotropic inverse problems

    Get PDF
    In this article we consider the anisotropic Calderon problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for anisotropic inverse problems, via the attenuated geodesic X-ray transform. Earlier results in dimension n≄3n \geq 3 were restricted to real-analytic metrics.Comment: 58 page

    Superconducting Transition Temperature in Heterogeneous Ferromagnet-Superconductor Systems

    Get PDF
    We study the shift of the the superconducting transition temperature TcT_c in ferromagnetic-superconducting bi-layers and in a superconducting film supplied a square array of ferromagnetic dots. We find that the transition temperature in these two cases change presumably in opposite direction and that its change is not too small. We extend these results to multilayer structures. We predict that rather small external magnetic field ∌10\sim 10 Oe can change the transition temperature of the bilayer by 10% .Comment: 9 pages, 2 figure
    • 

    corecore