274 research outputs found

    Dance for people with disabilities: a possible element of personal and social transformation

    Get PDF
    O artigo objetiva compreender o papel desempenhado pela dança na vida de pessoas com deficiência, apresentar reflexões sobre como a dança pode constituir-se num elemento de transformação pessoal e social. Foram feitas a revisão da literatura com ênfase em dança, deficiência e suas relações e a análise interpretativa baseada nas obras de Le Breton. O corpo com deficiência que ocupa espaços antes dominados pelo corpo ideal leva os espectadores a dialogar/confrontar a história desse corpo com as próprias histórias, valores e (pré)conceitos. Conclui-se que a dança pode ser um elemento de transformação pessoal e social por permitir experiências/reflexões sobre a aceitação de diferentes corpos e expressões, sem desqualificar ou menosprezar qualquer tipo de diversidade413271276The article aims to understand the role played by dance in the lives of people with disabilities, reflecting on how dance can be an element of personal and social transformation. A review of the literature with emphasis on dance, disability, and their relationships, and the interpretative analysis based on the works of Le Breton. The disabled body occupying spaces previously dominated by the ideal body, leads the spectators to dialogue / confront the history of this body with its own stories, values and (pre) concepts. It is concluded that dance can be an element of personal and social transformation by opportunizing experiences / reflections on the acceptance of different bodies and expressions, without disqualifying or disparaging any kind of diversit

    Hawking temperature of rotating charged black strings from tunneling

    Full text link
    Thermal radiations from spherically symmetric black holes have been studied from the point of view of quantum tunneling. In this paper we extend this approach to study radiation of fermions from charged and rotating black strings. Using WKB approximation and Hamilton-Jacobi method we work out the tunneling probabilities of incoming and outgoing fermions and find the correct Hawking temperature for these objects. We show that in appropriate limits the results reduce to those for the uncharged and non-rotating black strings

    Metastable neon collisions: anisotropy and scattering length

    Get PDF
    In this paper we investigate the effective scattering length aa of spin-polarized Ne*. Due to its anisotropic electrostatic interaction, its scattering length is determined by five interaction potentials instead of one, even in the spin-polarized case, a unique property among the Bose condensed species and candidates. Because the interaction potentials of Ne* are not known accurately enough to predict the value of the scattering length, we investigate the behavior of aa as a function of the five phase integrals corresponding to the five interaction potentials. We find that the scattering length has five resonances instead of only one and cannot be described by a simple gas-kinetic approach or the DIS approximation. However, the probability for finding a positive or large value of the scattering length is not enhanced compared to the single potential case. The complex behavior of aa is studied by comparing a quantum mechanical five-channel numerical calculation to simpler two-channel models. We find that the induced dipole-dipole interaction is responsible for coupling between the different |\Omega> states, resulting in an inhomogeneous shift of the resonance positions and widths in the quantum mechanical calculation as compared to the DIS approach. The dependence of the resonance positions and widths on the input potentials turns out to be rather straightforward. The existence of two bosonic isotopes of Ne* enables us to choose the isotope with the most favorable scattering length for efficient evaporative cooling towards the Bose-Einstein Condensation transition, greatly enhancing the feasibility to reach this transition.Comment: 13pages, 8 eps figures, analytical model in section V has been remove

    Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol sebacate)/Nanoparticle-Based Composite Patch for Myocardial Infarction Applications

    Get PDF
    Heart tissue engineering is critical in the treatment of myocardial infarction, which may benefit from drug-releasing smart materials. In this study, we load a small molecule (3i-1000) in new biodegradable and conductive patches for application in infarcted myocardium. The composite patches consist of a biocompatible elastomer, poly(glycerol sebacate) (PGS), coupled with collagen type I, used to promote cell attachment. In addition, polypyrrole is incorporated because of its electrical conductivity and to induce cell signaling. Results from the in vitro experiments indicate a high density of cardiac myoblast cells attached on the patches, which stay viable for at least 1 month. The degradation of the patches does not show any cytotoxic effect, while 3i-1000 delivery induces cell proliferation. Conductive patches show high blood wettability and drug release, correlating with the rate of degradation of the PGS matrix. Together with the electrical conductivity and elongation characteristics, the developed biomaterial fits the mechanical, conductive, and biological demands required for cardiac treatment.</p

    Optimization of evaporative cooling towards a large number of Bose-Einstein condensed atoms

    Full text link
    We study the optimization of evaporative cooling in trapped bosonic atoms on the basis of quantum kinetic theory of a Bose gas. The optimized cooling trajectory for 87^{87}Rb atoms indicates that the acceleration of evaporative cooling around the transition point of Bose-Einstein condensation is very effective against loss of trapped atoms caused by three-body recombination. The number of condensed atoms is largely enhanced by the optimization, more than two orders of magnitude in our present calculation using relevant experimental parameters, as compared with the typical value given by the conventional evaporative cooling where the frequency of radio-frequency magnetic field is swept exponentially. In addition to this optimized cooling, it is also shown that highly efficient evaporative cooling can be achieved by an initial exponential and then a rapid linear sweep of frequency.Comment: 7 pages, REVTeX, 5 eps figures, Phys. Rev A in press (01 Feburuary 2003
    corecore