50,568 research outputs found
Local Physical Coodinates from Symplectic Projector Method
The basic arguments underlying the symplectic projector method are presented.
By this method, local free coordinates on the constrait surface can be obtained
for a broader class of constrained systems. Some interesting examples are
analyzed.Comment: 8 page
Entropic Law of Force, Emergent Gravity and the Uncertainty Principle
The entropic formulation of the inertia and the gravity relies on quantum,
geometrical and informational arguments. The fact that the results are
completly classical is missleading. In this paper we argue that the entropic
formulation provides new insights into the quantum nature of the inertia and
the gravity. We use the entropic postulate to determine the quantum uncertainty
in the law of inertia and in the law of gravity in the Newtonian Mechanics, the
Special Relativity and in the General Relativity. These results are obtained by
considering the most general quantum property of the matter represented by the
Uncertainty Principle and by postulating an expression for the uncertainty of
the entropy such that: i) it is the simplest quantum generalization of the
postulate of the variation of the entropy and ii) it reduces to the variation
of the entropy in the absence of the uncertainty.Comment: 10 pages. Important discussion of the special relativistic case and
the newtonian limit of the general relativistic case added. The paper has
been reformatted. The authorship listing corrected. (It has been published by
mistake out of order in the first version. We have been adhering to the
Hardy-Littlewood Rule over the years.) Typos corrected. Four references adde
DSMC evaluation of the Navier-Stokes shear viscosity of a granular fluid
A method based on the simple shear flow modified by the introduction of a
deterministic non-conservative force and a stochastic process is proposed to
measure the Navier-Stokes shear viscosity in a granular fluid described by the
Enskog equation. The method is implemented in DSMC simulations for a wide range
of values of dissipation and density. It is observed that, after a certain
transient period, the system reaches a hydrodynamic stage which tends to the
Navier-Stokes regime for long times. The results are compared with theoretical
predictions obtained from the Chapman-Enskog method in the leading Sonine
approximation, showing quite a good agreement, even for strong dissipation.Comment: 6 pages, 4 figures; to appear in Rarefied Gas Dynamics: 24th
International Symposium (AIP Conference Proceedings
The Contribution of the First Stars to the Cosmic Infrared Background
We calculate the contribution to the cosmic infrared background from very
massive metal-free stars at high redshift. We explore two plausible
star-formation models and two limiting cases for the reprocessing of the
ionizing stellar emission. We find that Population III stars may contribute
significantly to the cosmic near-infrared background if the following
conditions are met: (i) The first stars were massive, with M > ~100 M_sun. (ii)
Molecular hydrogen can cool baryons in low-mass haloes. (iii) Pop III star
formation is ongoing, and not shut off through negative feedback effects. (iv)
Virialized haloes form stars at about 40 per cent efficiency up to the redshift
of reionization, z~7. (v) The escape fraction of the ionizing radiation into
the intergalactic medium is small. (vi) Nearly all of the stars end up in
massive black holes without contributing to the metal enrichment of the
Universe.Comment: 11 pages, 6 figures, expanded discussion, added mid-IR to Fig 6,
MNRAS in pres
Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider
In this work we investigate the coherent photoproduction of psi(1S), psi(2S)
and Upsilon (1S) states in the proton-nucleus collisions in the LHC energies.
Predictions for the rapidity distributions are presented using the color dipole
formalism and including saturation effects that are expected to be relevant at
high energies. Calculations are done at the energy 5.02 TeV and also for the
next LHC run at 8.8 TeV in proton-lead mode. Discussion is performed on the
main theoretical uncertainties associated to the calculations.Comment: 05 pages, 5 figures. Version to be published in Phys. Rev.
- …