58,853 research outputs found
Hamilton-Jacobi Approach for Power-Law Potentials
The classical and relativistic Hamilton-Jacobi approach is applied to the
one-dimensional homogeneous potential, , where and
are continuously varying parameters. In the non-relativistic case, the
exact analytical solution is determined in terms of , and the total
energy . It is also shown that the non-linear equation of motion can be
linearized by constructing a hypergeometric differential equation for the
inverse problem . A variable transformation reducing the general problem
to that one of a particle subjected to a linear force is also established. For
any value of , it leads to a simple harmonic oscillator if , an
"anti-oscillator" if , or a free particle if E=0. However, such a
reduction is not possible in the relativistic case. For a bounded relativistic
motion, the first order correction to the period is determined for any value of
. For , it is found that the correction is just twice that one
deduced for the simple harmonic oscillator (), and does not depend on the
specific value of .Comment: 12 pages, Late
New coupled quintessence cosmology
A component of dark energy has been recently proposed to explain the current
acceleration of the Universe. Unless some unknown symmetry in Nature prevents
or suppresses it, such a field may interact with the pressureless component of
dark matter, giving rise to the so-called models of coupled quintessence. In
this paper we propose a new cosmological scenario where radiation and baryons
are conserved, while the dark energy component is decaying into cold dark
matter (CDM). The dilution of CDM particles, attenuated with respect to the
usual scaling due to the interacting process, is characterized by a
positive parameter , whereas the dark energy satisfies the equation
of state (). We carry out a joint statistical
analysis involving recent observations from type Ia supernovae, baryon acoustic
oscillation peak, and Cosmic Microwave Background shift parameter to check the
observational viability of the coupled quintessence scenario here proposed.Comment: 7 pages, 7 figures. Minor corrections to match published versio
Is CDM an effective CCDM cosmology?
We show that a cosmology driven by gravitationally induced particle
production of all non-relativistic species existing in the present Universe
mimics exactly the observed flat accelerating CDM cosmology with just
one dynamical free parameter. This kind of scenario includes the creation cold
dark matter (CCDM) model [Lima, Jesus & Oliveira, JCAP 011(2010)027] as a
particular case and also provides a natural reduction of the dark sector since
the vacuum component is not needed to accelerate the Universe. The new cosmic
scenario is equivalent to CDM both at the background and perturbative
levels and the associated creation process is also in agreement with the
universality of the gravitational interaction and equivalence principle.
Implicitly, it also suggests that the present day astronomical observations
cannot be considered the ultimate proof of cosmic vacuum effects in the evolved
Universe because CDM may be only an effective cosmology.Comment: 6 pages, 2 figures, changes in the abstract, introduction, new
references and typo correction
Pair correlation function of short-ranged square-well fluids
We have performed extensive Monte Carlo simulations in the canonical (NVT)
ensemble of the pair correlation function for square-well fluids with well
widths ranging from 0.1 to 1.0, in units of the diameter
of the particles. For each one of these widths, several densities and
temperatures in the ranges and
, where is the
critical temperature, have been considered. The simulation data are used to
examine the performance of two analytical theories in predicting the structure
of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and
B. C.-Y. Lu, J. Chem. Phys. {\bf 100}, 3079, 6665 (1994)] and the
non-perturbative model proposed by two of us [S. B. Yuste and A. Santos, J.
Chem. Phys. {\bf 101}, 2355 (1994)]. It is observed that both theories
complement each other, as the latter theory works well for short ranges and/or
moderate densities, while the former theory does for long ranges and high
densities.Comment: 10 pages, 10 figure
Is the transition redshift a new cosmological number?
Observations from Supernovae Type Ia (SNe Ia) provided strong evidence for an
expanding accelerating Universe at intermediate redshifts. This means that the
Universe underwent a transition from deceleration to acceleration phases at a
transition redshift of the order unity whose value in principle depends
on the cosmology as well as on the assumed gravitational theory. Since
cosmological accelerating models endowed with a transition redshift are
extremely degenerated, in principle, it is interesting to know whether the
value of itself can be observationally used as a new cosmic
discriminator. After a brief discussion of the potential dynamic role played by
the transition redshift, it is argued that future observations combining SNe
Ia, the line-of-sight (or "radial") baryon acoustic oscillations, the
differential age of galaxies, as well as the redshift drift of the spectral
lines may tightly constrain , thereby helping to narrow the parameter
space for the most realistic models describing the accelerating Universe.Comment: 12 pages, 5 figures. Some discussions about how to estimate the
transition redshift have been added. New data by Planck and H(z) data have
been mentioned. New references have been adde
Asteroseismology and Magnetic Cycles
Small cyclic variations in the frequencies of acoustic modes are expected to
be a common phenomenon in solar-like pulsators, as a result of stellar magnetic
activity cycles. The frequency variations observed throughout the solar and
stellar cycles contain information about structural changes that take place
inside the stars as well as about variations in magnetic field structure and
intensity. The task of inferring and disentangling that information is,
however, not a trivial one. In the sun and solar-like pulsators, the direct
effect of the magnetic field on the oscillations might be significantly
important in regions of strong magnetic field (such as solar- / stellar-spots),
where the Lorentz force can be comparable to the gas-pressure gradient. Our aim
is to determine the sun- / stellar-spots effect on the oscillation frequencies
and attempt to understand if this effect contributes strongly to the frequency
changes observed along the magnetic cycle. The total contribution of the spots
to the frequency shifts results from a combination of direct and indirect
effects of the magnetic field on the oscillations. In this first work we
considered only the indirect effect associated with changes in the
stratification within the starspot. Based on the solution of the wave equation
and the variational principle we estimated the impact of these stratification
changes on the oscillation frequencies of global modes in the sun and found
that the induced frequency shifts are about two orders of magnitude smaller
than the frequency shifts observed over the solar cycle.Comment: 4 pages, 6 figures, ESF Conference: The Modern Era of Helio- and
Asteroseismology, to be published on 3 December 2012 at Astronomische
Nachrichten 333, No. 10, 1032-103
From de Sitter to de Sitter: decaying vacuum models as a possible solution to the main cosmological problems
Decaying vacuum cosmological models evolving smoothly between two extreme
(very early and late time) de Sitter phases are capable to solve or at least to
alleviate some cosmological puzzles, among them: (i) the singularity, (ii)
horizon, (iii) graceful-exit from inflation, and (iv) the baryogenesis problem.
Our basic aim here is to discuss how the coincidence problem based on a large
class of running vacuum cosmologies evolving from de Sitter to de Sitter can
also be mollified. It is also argued that even the cosmological constant
problem become less severe provided that the characteristic scales of the two
limiting de Sitter manifolds are predicted from first principles.Comment: 7 pages, 2 figures, title changed, typos corrected, text and new
references adde
New family of potentials with analytical twiston-like solutions
In this letter we present a new approach to find analytical twiston models.
The effective two-field model was constructed by a non-trivial combination of
two one field systems. In such an approach we successfully build analytical
models which are satisfied by a combination of two defect-like solutions, where
one is responsible to twist the molecular chain by , while the other
implies in a longitudinal movement. Such a longitudinal movement can be fitted
to have the size of the distance between adjacent molecular groups. The
procedure works nicely and can be used to describe the dynamics of several
other molecular chains.Comment: 7 pages, 3 figure
- …