42,300 research outputs found

    GeMs/GSAOI observations of La Serena 94: an old and far open cluster inside the solar circle

    Full text link
    Physical properties were derived for the candidate open cluster La Serena 94, recently unveiled by the VVV collaboration. Thanks to the exquisite angular resolution provided by GeMS/GSAOI, we could characterize this system in detail, for the first time, with deep photometry in JHKs_{s} - bands. Decontaminated JHKs_{s} diagrams reach about 5 mag below the cluster turnoff in H. The locus of red clump giants in the colour - colour diagram, together with an extinction law, was used to obtain an average extinction of AV=14.18±0.71A_V =14.18 \pm 0.71. The same stars were considered as standard - candles to derive the cluster distance, 8.5±1.08.5 \pm 1.0 kpc. Isochrones were matched to the cluster colour - magnitude diagrams to determine its age, logt(yr)=9.12±0.06\log{t(yr)}=9.12\pm 0.06, and metallicity, Z=0.02±0.01Z=0.02\pm0.01. A core radius of rc=0.51±0.04r_{c}=0.51\pm 0.04 pc was found by fitting King models to the radial density profile. By adding up the visible stellar mass to an extrapolated mass function, the cluster mass was estimated as M=(2.65±0.57)×103M=(2.65\pm0.57) \times 10^3 M_{\odot}, consistent with an integrated magnitude of MK=5.82±0.16M_{K}=-5.82\pm0.16 and a tidal radius of rt=17.2±2.1r_{t}=17.2\pm2.1 pc. The overall characteristics of La Serena 94 confirm that it is an old open cluster located in the Crux spiral arm towards the fourth Galactic quadrant and distant 7.30±0.497.30\pm 0.49 kpc from the Galactic centre. The cluster distorted structure, mass segregation and age indicate that it is a dynamically evolved stellar system.Comment: 16 pages, 24 figures, 2 Tables, accepted by MNRAS; corrected typo

    Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

    Full text link
    A compressible flow characterized by a velocity field ux(x,t)=ax/(1+at)u_x(x,t)=ax/(1+at) is analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter (the longitudinal deformation rate aa) distinguishes between an expansion (a>0a>0) and a condensation (a<0a<0) phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear viscosity η(a)\eta^*(a^*), that depends on the dimensionless longitudinal rate aa^*. The Chapman-Enskog expansion of η\eta^* in powers of aa^* is seen to be only asymptotic (except in the case of Maxwell molecules). The velocity distribution function is also studied. At any value of aa^*, it exhibits an algebraic high-velocity tail that is responsible for the divergence of velocity moments. For sufficiently negative aa^*, moments of degree four and higher may diverge, while for positive aa^* the divergence occurs in moments of degree equal to or larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat flux plus other minor changes added. Revised version accepted for publication in PR
    corecore