87,752 research outputs found

    Dynamical instabilities in density-dependent hadronic relativistic models

    Full text link
    Unstable modes in asymmetric nuclear matter (ANM) at subsaturation densities are studied in the framework of relativistic mean-field density-dependent hadron models. The size of the instabilities that drive the system are calculated and a comparison with results obtained within the non-linear Walecka model is presented. The distillation and anti-distillation effects are discussed.Comment: 8 pages, 8 Postscript figures. Submitted for publication in Phys. Rev.

    Detecting transit signatures of exoplanetary rings using SOAP3.0

    Full text link
    CONTEXT. It is theoretically possible for rings to have formed around extrasolar planets in a similar way to that in which they formed around the giant planets in our solar system. However, no such rings have been detected to date. AIMS: We aim to test the possibility of detecting rings around exoplanets by investigating the photometric and spectroscopic ring signatures in high-precision transit signals. METHODS: The photometric and spectroscopic transit signals of a ringed planet is expected to show deviations from that of a spherical planet. We used these deviations to quantify the detectability of rings. We present SOAP3.0 which is a numerical tool to simulate ringed planet transits and measure ring detectability based on amplitudes of the residuals between the ringed planet signal and best fit ringless model. RESULTS: We find that it is possible to detect the photometric and spectroscopic signature of near edge-on rings especially around planets with high impact parameter. Time resolution \leq 7 mins is required for the photometric detection, while 15 mins is sufficient for the spectroscopic detection. We also show that future instruments like CHEOPS and ESPRESSO, with precisions that allow ring signatures to be well above their noise-level, present good prospects for detecting rings.Comment: 13 pages, 16 figures, 2 tables , accepted for publication in A&

    Hydrogen storage in the form of metal hydrides

    Get PDF
    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator

    Vector constants of motion for time-dependent Kepler and isotropic harmonic oscillator potentials

    Get PDF
    A method of obtaining vector constants of motion for time-independent as well as time-dependent central fields is discussed. Some well-established results are rederived in this alternative way and new ones obtained.Comment: 18 pages, no figures, regular Latex article forma

    Laser-light scattering approach to peptide–membrane interaction

    Get PDF
    © International University Line, 2010Membrane-active peptides are becoming widely used, mainly due to their high therapeutic potential. Although the therapeutic action is characterized, the mechanisms of interaction are often unclear or controversial. In biophysical studies, non-invasive techniques are overlooked when studying the effect of peptides on membranes. Light scattering techniques, such as dynamic light scattering and static light scattering, can be used as tools to determine whether promotion of membrane aggregation in the presence of peptides and of self-peptide aggregation in solution occurs. More recently, light scattering has been used for evaluating the alteration on membrane surface charge (ζ-potential) promoted by membrane–peptide interactions. The data obtained by these techniques (either by themselves or combined with complementary experimental approaches) therefore yield valuable elucidations of membrane-active peptides’ mechanisms of action at the molecular level.This work was partially supported by the Fundação para a Ciência e Tecnologia (FCT) of the Portuguese Ministry of Science, Technology and Higher Education. M.M.D. acknowledges the grant SFRH/BD/41750/2007 from FCT

    Effects of extended impurity perturbation in d-wave superconductor

    Full text link
    We describe the effects of electronic perturbation distributed on nearest neighbor sites to the impurity center in a planar \textit{d}-wave superconductor, in approximation of circular Fermi surface. Alike the behavior previously reported for point-like perturbation and square Fermi surface, the quasiparticle density of states ρ(ϵ)\rho (\epsilon) can display a resonance inside the gap (and very weak features from low symmetry representations of non-local perturbation) and asymptotically vanishes at ϵ0\epsilon \to 0 as ρϵ/ln2ϵ\rho\sim\epsilon/\ln^2\epsilon. The local suppression of SC order parameter in this model is found to be somewhat weaker than for an equivalent point-like (non-magnetic) perturbation and much weaker than for a spin-dependent (extended) perturbation.Comment: 7 pages, 5 figures, some minor typos and the curves in Fig. 5 correcte
    corecore