23 research outputs found

    Distribution and growth rates of immature hawksbill turtles Eretmochelys imbricata in Fernando de Noronha, Brazil

    Get PDF
    This is the final version. Available on open access from Inter-Research via the DOI in this recordKnowledge of life history parameters is essential for the effective management of species of conservation concern. For migratory marine vertebrates such as hawksbill sea turtles Eretmochelys imbricata, feeding aggregations are important developmental habitats, allowing the study of population dynamics. Here, we used data from a 31 yr mark-recapture study of juvenile hawksbill sea turtles in the Fernando de Noronha Archipelago, Brazil, to estimate key demographic parameters. Turtles recruit to the neritic habitat at similar sizes to those of other Atlantic hawksbill aggregations. The curved carapace length (CCL) at the first capture ranged from 28 to 84 cm (mean ± SD: 44.6 ± 9.8 cm). Median minimum residence time of turtles captured at least twice was 3.2 yr, whilst long-term minimum residence of up to 14 yr was also observed, with turtles showing site fidelity within the archipelago. The mean size of turtles captured was constant throughout time. Turtles grew on average 3.4 ± 2.2 cm yr-1, with a monotonic expected growth rate function generally decreasing with increasing size. At these rates, hawksbill turtles in Fernando de Noronha would need to spend ca. 14-18 yr to reach minimum adult breeding size (~74 cm CCL). This mark-recapture study has been essential to understanding the ecology and demographic parameters of this regional hawksbill turtle neritic foraging ground.National Council for Scientific and Technological Development (CNPq), Brazi

    Age and Maturity Effects on Morphological and Physical Performance Measures of Adolescent Judo Athletes

    Get PDF
    Studies assessing age and maturation effects on morphological and physical performance measures of young judokas are scarce. This study aimed to assess the independent and combined effects of chronological age and biological maturation on anthropometry and physical performance of 67 judokas aged 11-14. Participants' anthropometric profiles were assessed, and physical performance tests were completed. Multivariate analyses of variance revealed an independent effect of age (anthropometry: F = 1.871; p < 0.05; Pillai's trace = 0.545; η2p = 0.272; physical performance: F = 2.876; p < 0.01; Pillai's trace = 0.509; η2p = 0.254) and maturity (anthropometry: F = 10.085; p < 0.01; Pillai's trace = 0.669; η2p = 0.669; physical performance: F = 11.700; p < 0.01; Pillai's trace = 0.581; η2p = 0.581). There was no significant combined effect of age and maturity. The maturation effect remained significant when controlled for age (anthropometry: F = 4.097; p < 0.01; Pillai's trace = 0.481; η2p = 0.481; physical performance: F = 3.859; p < 0.01; Pillai's trace = 0.0.318; η2p = 0.318). Inadolescent judokas, the maturation effect on growth and physical performance seems to be more relevant than the age effect, leading to the need to control this effect in training routines and competitive events. As in studies with youth soccer players and other youth athletes, bio-banding can be a strategy for controlling maturation in combat sports

    Strong CD4 T cell responses to Zika virus antigens in a cohort of Dengue virus immune mothers of congenital Zika virus syndrome infants

    Get PDF
    Background: There is an urgent need to understand the complex relationship between cross-reactive anti-viral immunity, disease susceptibility, and severity in the face of differential exposure to related, circulating Flaviviruses. Co-exposure to Dengue virus and Zika virus in Brazil is a case in point. A devastating aspect of the 2015-2016 South American Zika outbreak was the dramatic increase in numbers of infants born with microcephaly to mothers exposed to Zika virus during pregnancy. It has been proposed that this is more likely to ensue from Zika infection in women lacking cross-protective Dengue immunity. In this case series we measure the prevalence of Dengue immunity in a cohort of mothers exposed to Zika virus during pregnancy in the 2015-2016 Zika outbreak that gave birth to an infant affected by microcephaly and explore their adaptive immunity to Zika virus. Results: Fifty women from Sergipe, Brazil who gave birth to infants with microcephaly following Zika virus exposure during the 2015-16 outbreak were tested for serological evidence of Dengue exposure and IFNγ ELISpot spot forming cell (SFC) response to Zika virus. The majority (46/50) demonstrated Dengue immunity. IFNγ ELISpot responses to Zika virus antigens showed the following hierarchy: Env>NS1>NS3>C protein. Twenty T cell epitopes from Zika virus Env were identified. Responses to Zika virus antigens Env and NS1 were polyfunctional with cells making IFNγ, TNFα, IL-4, IL-13, and IL-10. In contrast, responses to NS5 only produced the immune regulatory TGFβ1 cytokine. There were SFC responses against Zika virus Env (1-20) and variant peptide sequences from West Nile virus, Dengue virus 1-4 and Yellow Fever virus. Conclusion: Almost all the women in our study showed serological evidence of Dengue immunity, suggesting that microcephaly can occur in DENV immune mothers. T cell immunity to Zika virus showed a multifunctional response to the antigens Env and NS1 and immune regulatory responses to NS5 and C protein. Our data support an argument that different viral products may skew the antiviral response to a more pro or anti-inflammatory outcome, with an associated impact on immunopathogenesis

    Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs
    corecore