60,265 research outputs found

    Dynamical instabilities in density-dependent hadronic relativistic models

    Full text link
    Unstable modes in asymmetric nuclear matter (ANM) at subsaturation densities are studied in the framework of relativistic mean-field density-dependent hadron models. The size of the instabilities that drive the system are calculated and a comparison with results obtained within the non-linear Walecka model is presented. The distillation and anti-distillation effects are discussed.Comment: 8 pages, 8 Postscript figures. Submitted for publication in Phys. Rev.

    Out-of-equilibrium states and quasi-many-body localization in polar lattice gases

    Full text link
    The absence of energy dissipation leads to an intriguing out-of-equilibrium dynamics for ultracold polar gases in optical lattices, characterized by the formation of dynamically-bound on-site and inter-site clusters of two or more particles, and by an effective blockade repulsion. These effects combined with the controlled preparation of initial states available in cold gases experiments can be employed to create interesting out-of-equilibrium states. These include quasi-equilibrated effectively repulsive 1D gases for attractive dipolar interactions and dynamically-bound crystals. Furthermore, non-equilibrium polar lattice gases can offer a promising scenario for the study of many-body localization in the absence of quenched disorder. This fascinating out-of-equilibrium dynamics for ultra-cold polar gases in optical lattices may be accessible in on-going experiments.Comment: 5+1 pages, 4+1 figure

    An effective many-body theory for strongly interacting polar molecules

    Full text link
    We derive a general effective many-body theory for bosonic polar molecules in strong interaction regime, which cannot be correctly described by previous theories within the first Born approximation. The effective Hamiltonian has additional interaction terms, which surprisingly reduces the anisotropic features of dipolar interaction near the shape resonance regime. In the 2D system with dipole moment perpendicular to the plane, we find that the phonon dispersion scales as \sqrt{|\bfp|} in the low momentum (\bfp) limit, showing the same low energy properties as a 2D charged Bose gas with Coulomb (1/r1/r) interactions.Comment: Same as published version (11 pages, 2 figure

    Exoplanets: Gaia and the importance of ground based spectroscopy follow-up

    Full text link
    The search for extrasolar planets has developed rapidly and, today, more than 1700 planets have been found orbiting stars. Thanks to Gaia, we will collect high-accuracy astrometric orbits of thousands of new low-mass celestial objects, such as extra-solar planets and brown dwarfs. These measurements in combination with spectroscopy and with present day and future extrasolar planet search programs (like HARPS, ESPRESSO) will have a crucial contribution to several aspects of planetary astrophysics (formation theories, dynamical evolution, etc.). Moreover, Gaia will have a strong contribution on the stellar chemical and kinematic characterisation studies. In this paper we present a short overview of the importance of Gaia in the context of exoplanet research. As preparatory work for Gaia, we will then present a study where we derived stellar parameters for a sample of field giant stars

    Exponential Convergence Towards Stationary States for the 1D Porous Medium Equation with Fractional Pressure

    Get PDF
    We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous medium equation introduced by Caffarelli and V\'azquez, where the pressure is obtained as a Riesz potential associated to the density. We take advantage of the displacement convexity of the Riesz potential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and the Euclidean transport distance. An argument by approximation shows that this functional inequality is enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady states

    Comment on "Theory and computer simulation for the equation of state of additive hard-disk fluid mixtures"

    Full text link
    A flaw in the comparison between two different theoretical equations of state for a binary mixture of additive hard disks and Monte Carlo results, as recently reported in C. Barrio and J. R. Solana, Phys. Rev. E 63, 011201 (2001), is pointed out. It is found that both proposals, which require the equation of state of the single component system as input, lead to comparable accuracy but the one advocated by us [A. Santos, S. B. Yuste, and M. L\'{o}pez de Haro, Mol. Phys. 96, 1 (1999)] is simpler and complies with the exact limit in which the small disks are point particles.Comment: 4 pages, including 1 figur

    Impact of micro-telluric lines on precise radial velocities and its correction

    Full text link
    Context: In the near future, new instruments such as ESPRESSO will arrive, allowing us to reach a precision in radial-velocity measurements on the order of 10 cm/s. At this level of precision, several noise sources that until now have been outweighed by photon noise will start to contribute significantly to the error budget. The telluric lines that are not neglected by the masks for the radial velocity computation, here called micro-telluric lines, are one such noise source. Aims: In this work we investigate the impact of micro-telluric lines in the radial velocities calculations. We also investigate how to correct the effect of these atmospheric lines on radial velocities. Methods: The work presented here follows two parallel lines. First, we calculated the impact of the micro-telluric lines by multiplying a synthetic solar-like stellar spectrum by synthetic atmospheric spectra and evaluated the effect created by the presence of the telluric lines. Then, we divided HARPS spectra by synthetic atmospheric spectra to correct for its presence on real data and calculated the radial velocity on the corrected spectra. When doing so, one considers two atmospheric models for the synthetic atmospheric spectra: the LBLRTM and TAPAS. Results: We find that the micro-telluric lines can induce an impact on the radial velocities calculation that can already be close to the current precision achieved with HARPS, and so its effect should not be neglected, especially for future instruments such as ESPRESSO. Moreover, we find that the micro-telluric lines' impact depends on factors, such as the radial velocity of the star, airmass, relative humidity, and the barycentric Earth radial velocity projected along the line of sight at the time of the observation.Comment: Accepted in A&
    corecore