48,843 research outputs found
Quantum Chaos and Thermalization in Isolated Systems of Interacting Particles
This review is devoted to the problem of thermalization in a small isolated
conglomerate of interacting constituents. A variety of physically important
systems of intensive current interest belong to this category: complex atoms,
molecules (including biological molecules), nuclei, small devices of condensed
matter and quantum optics on nano- and micro-scale, cold atoms in optical
lattices, ion traps. Physical implementations of quantum computers, where there
are many interacting qubits, also fall into this group. Statistical
regularities come into play through inter-particle interactions, which have two
fundamental components: mean field, that along with external conditions, forms
the regular component of the dynamics, and residual interactions responsible
for the complex structure of the actual stationary states. At sufficiently high
level density, the stationary states become exceedingly complicated
superpositions of simple quasiparticle excitations. At this stage, regularities
typical of quantum chaos emerge and bring in signatures of thermalization. We
describe all the stages and the results of the processes leading to
thermalization, using analytical and massive numerical examples for realistic
atomic, nuclear, and spin systems, as well as for models with random
parameters. The structure of stationary states, strength functions of simple
configurations, and concepts of entropy and temperature in application to
isolated mesoscopic systems are discussed in detail. We conclude with a
schematic discussion of the time evolution of such systems to equilibrium.Comment: 69 pages, 31 figure
Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction
We describe an apparatus designed to make non-demolition measurements on a
Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This
apparatus contains, as well as the bosonic gas and the trap, an optical cavity.
We show how the interaction between the light and the atoms, under appropriate
conditions, can allow for a weakly disturbing yet highly precise measurement of
the population imbalance between the two wells and its variance. We show that
the setting is well suited for the implementation of quantum-limited estimation
strategies for the inference of the key parameters defining the evolution of
the atomic system and based on measurements performed on the cavity field. This
would enable {\it de facto} Hamiltonian diagnosis via a highly controllable
quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.
Self-bound many-body states of quasi-one-dimensional dipolar Fermi gases: Exploiting Bose-Fermi mappings for generalized contact interactions
Using a combination of results from exact mappings and from mean-field theory
we explore the phase diagram of quasi-one-dimensional systems of identical
fermions with attractive dipolar interactions. We demonstrate that at low
density these systems provide a realization of a single-component
one-dimensional Fermi gas with a generalized contact interaction. Using an
exact duality between one-dimensional Fermi and Bose gases, we show that when
the dipole moment is strong enough, bound many-body states exist, and we
calculate the critical coupling strength for the emergence of these states. At
higher densities, the Hartree-Fock approximation is accurate, and by combining
the two approaches we determine the structure of the phase diagram. The
many-body bound states should be accessible in future experiments with
ultracold polar molecules
A superfluid He3 detector for direct dark matter search
MACHe3 (MAtrix of Cells of superfluid He3) is a project of a new detector for
direct Dark Matter Search. The idea is to use superfluid He3 as a sensitive
medium. The existing device, the superfluid He3 cell, will be briefly
introduced. Then a description of the MACHe3 project will be presented, in
particular the background rejection and the neutralino event rate that may be
achieved with such a device.Comment: 6 pages, 3 figures, Proceedings of the 3rd International Workshop on
the Identification of Dark Matter (York, UK, 09/18/2000-09/22/2000
Extracting constraints from direct detection searches of supersymmetric dark matter in the light of null results from the LHC in the squark sector
The comparison of the results of direct detection of Dark Matter, obtained
with various target nuclei, requires model-dependent, or even arbitrary,
assumptions. Indeed, to draw conclusions either the spin-dependent (SD) or the
spin-independent (SI) interaction has to be neglected. In the light of the null
results from supersymmetry searches at the LHC, the squark sector is pushed to
high masses. We show that for a squark sector at the TeV scale, the framework
used to extract contraints from direct detection searches can be redefined as
the number of free parameters is reduced. Moreover, the correlation observed
between SI and SD proton cross sections constitutes a key issue for the
development of the next generation of Dark Matter detectors.Comment: Figure 3 has been updated. Conclusions unchange
- …