46,576 research outputs found

    K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions

    Full text link
    Theoretical transition energies and probabilities for He-, Li- and Be-like Praseodymium ions are calculated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility

    The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle

    Get PDF
    In this paper we investigate statistical entropy of a 3-dimensional rotating acoustic black hole based on generalized uncertainty principle. In our results we obtain an area entropy and a correction term associated with the noncommutative acoustic black hole when λ\lambda introduced in the generalized uncertainty principle takes a specific value. However, in this method, it is not needed to introduce the ultraviolet cut-off and divergences are eliminated. Moreover, the small mass approximation is not necessary in the original brick-wall model.Comment: 9 pages, no figures; version to appear in PLB. arXiv admin note: substantial text overlap with arXiv:1210.773

    Antiresonance and interaction-induced localization in spin and qubit chains with defects

    Full text link
    We study a spin chain with an anisotropic XXZ coupling in an external field. Such a chain models several proposed types of a quantum computer. The chain contains a defect with a different on-site energy. The interaction between excitations is shown to lead to two-excitation states localized next to the defect. In a resonant situation scattering of excitations on each other might cause decay of an excitation localized on the defect. We find that destructive quantum interference suppresses this decay. Numerical results confirm the analytical predictions.Comment: Updated versio

    The contribution of secondary eclipses as astrophysical false positives to exoplanet transit surveys

    Full text link
    We investigate in this paper the astrophysical false-positive configuration in exoplanet-transit surveys that involves eclipsing binaries and giant planets which present only a secondary eclipse, as seen from the Earth. To test how an eclipsing binary configuration can mimic a planetary transit, we generate synthetic light curve of three examples of secondary-only eclipsing binary systems that we fit with a circular planetary model. Then, to evaluate its occurrence we model a population of binaries in double and triple system based on binary statistics and occurrence. We find that 0.061% +/- 0.017% of main-sequence binary stars are secondary-only eclipsing binaries mimicking a planetary transit candidate down to the size of the Earth. We then evaluate the occurrence that an occulting-only giant planet can mimic an Earth-like planet or even smaller planet. We find that 0.009% +/- 0.002% of stars harbor a giant planet that present only the secondary transit. Occulting-only giant planets mimic planets smaller than the Earth that are in the scope of space missions like Kepler and PLATO. We estimate that up to 43.1 +/- 5.6 Kepler Objects of Interest can be mimicked by this new configuration of false positives, re-evaluating the global false-positive rate of the Kepler mission from 9.4% +/- 0.9% to 11.3% +/- 1.1%. We note however that this new false-positive scenario occurs at relatively long orbital period compared with the median period of Kepler candidates.Comment: 9 pages, 4 figures, accepted for publication in A&

    Modeling dark sector in Horndeski gravity at first-order formalism

    Full text link
    We investigate a cosmological scenario by finding solutions using first-order formalism in the Horndeski gravity that constrains the superpotential and implies that no free choice of scalar potential is allowed. Despite this we show that a de Sitter phase at late-time cosmology can be realized, where the dark energy sector can be identified. The scalar field equation of state tends to the cosmological scenario at present time and allows us to conclude that it can simulate the dark energy in the Horndeski gravity.Comment: Latex, 17 pages, 2 figures; version to appear in AHE
    • …
    corecore