16,808 research outputs found

    Lorentz-violating nonminimal coupling contributions in mesonic hydrogen atoms and generation of photon higher-order derivative terms

    Full text link
    We have studied the contributions of Lorentz-violating CPT-odd and CPT-even nonminimal couplings to the energy spectrum of the mesonic hydrogen and the higher-order radiative corrections to the effective action of the photon sector of a Lorentz-violating version of the scalar electrodynamics. By considering the complex scalar field describes charged mesons (pion or kaon), the non-relativistic limit of the model allows to attain upper-bounds by analyzing its contribution to the mesonic hydrogen energy. By using the experimental data for the 1S1S strong correction shift and the pure QED transitions 4P→3P4P \rightarrow 3P, the best upper-bound for the CPT-odd coupling is <10−12eV−1<10^{-12}\text{eV}^{-1} and for the CPT-even one is <10−16eV−2<10^{-16}\text{eV}^{-2}. Besides, the CPT-odd radiative correction to the photon action is a dimension-5 operator which looks like a higher-order Carroll-Field-Jackiw term. The CPT-even radiative contribution to the photon effective action is a dimension-6 operator which would be a higher-order derivative version of the minimal CPT-even term of the standard model extension

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    Magnetism and Pairing in Hubbard Bilayers.

    Full text link
    We study the Hubbard model on a bilayer with repulsive on-site interactions, UU, in which fermions undergo both intra-plane (tt) and inter-plane (tzt_z) hopping. This situation is what one would expect in high-temperature superconductors such as YBCO, with two adjacent CuO2_2 planes. Magnetic and pairing properties of the system are investigated through Quantum Monte Carlo simulations for both half- and quarter-filled bands. We find that in all cases inter-planar pairing with dx2−z2d_{x^2-z^2} symmetry is dominant over planar pairing with dx2−y2d_{x^2-y^2} symmetry, and that for tzt_z large enough pair formation is possible through antiferromagnetic correlations. However, another mechanism is needed to make these pairs condense into a superconducting state at lower temperatures. We identify the temperature for pair formation with the spin gap crossover temperature. [Submitted to Phys. Rev. B]Comment: 7 pages, uuencoded self-unpacking PS file with text and figures

    Ising Spin Glass in a Transverse Magnetic Field

    Full text link
    We study the three-dimensional quantum Ising spin glass in a transverse magnetic field following the evolution of the bond probability distribution under Renormalisation Group transformations. The phase diagram (critical temperature TcT_c {\em vs} transverse field Γ\Gamma) we obtain shows a finite slope near T=0T=0, in contrast with the infinite slope for the pure case. Our results compare very well with the experimental data recently obtained for the dipolar Ising spin glass LiHo0.167_{0.167}Y0.833_{0.833}F4_4, in a transverse field. This indicates that this system is more apropriately described by a model with short range interactions than by an equivalent Sherrington-Kirkpatrick model in a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9

    Gaussian phase-space representations for fermions

    Get PDF
    We introduce a positive phase-space representation for fermions, using the most general possible multi-mode Gaussian operator basis. The representation generalizes previous bosonic quantum phase-space methods to Fermi systems. We derive equivalences between quantum and stochastic moments, as well as operator correspondences that map quantum operator evolution onto stochastic processes in phase space. The representation thus enables first-principles quantum dynamical or equilibrium calculations in many-body Fermi systems. Potential applications are to strongly interacting and correlated Fermi gases, including coherent behaviour in open systems and nanostructures described by master equations. Examples of an ideal gas and the Hubbard model are given, as well as a generic open system, in order to illustrate these ideas.Comment: More references and examples. Much less mathematical materia

    Equation of state of charged colloidal suspensions and its dependence on the thermodynamic route

    Full text link
    The thermodynamic properties of highly charged colloidal suspensions in contact with a salt reservoir are investigated in the framework of the Renormalized Jellium Model (RJM). It is found that the equation of state is very sensitive to the particular thermodynamic route used to obtain it. Specifically, the osmotic pressure calculated within the RJM using the contact value theorem can be very different from the pressure calculated using the Kirkwood-Buff fluctuation relations. On the other hand, Monte Carlo (MC) simulations show that both the effective pair potentials and the correlation functions are accurately predicted by the RJM. It is suggested that the lack of self-consistency in the thermodynamics of the RJM is a result of neglected electrostatic correlations between the counterions and coions
    • …
    corecore