40,202 research outputs found

    Static, spherically symmetric solutions with a scalar field in Rastall gravity

    Full text link
    Rastall's theory belongs to the class of non-conservative theories of gravity. In vacuum, the only non-trivial static, spherically symmetric solution is the Schwarzschild one, except in a very special case. When a canonical scalar field is coupled to the gravity sector in this theory, new exact solutions appear for some values of the Rastall parameter aa. Some of these solutions describe the same space-time geometry as the recently found solutions in the kk-essence theory with a power function for the kinetic term of the scalar field. There is a large class of solutions (in particular, those describing wormholes and regular black holes) whose geometry coincides with that of solutions of GR coupled to scalar fields with nontrivial self-interaction potentials; the form of these potentials, however, depends on the Rastall parameter aa. We also note that all solutions of GR with a zero trace of the energy-momentum tensor, including black-hole and wormhole ones, may be re-interpreted as solutions of Rastall's theory.Comment: Latex file, 18 pages. To fit published versio

    Energy loss mechanism for suspended micro- and nanoresonators due to the Casimir force

    Full text link
    A so far not considered energy loss mechanism in suspended micro- and nanoresonators due to noncontact acoustical energy loss is investigated theoretically. The mechanism consists on the conversion of the mechanical energy from the vibratory motion of the resonator into acoustic waves on large nearby structures, such as the substrate, due to the coupling between the resonator and those structures resulting from the Casimir force acting over the separation gaps. Analytical expressions for the resulting quality factor Q for cantilever and bridge micro- and nanoresonators in close proximity to an underlying substrate are derived and the relevance of the mechanism is investigated, demonstrating its importance when nanometric gaps are involved

    Resistively detected nuclear magnetic resonance via a single InSb two-dimensional electron gas at high temperature

    Full text link
    We report on the demonstration of the resistively detected nuclear magnetic resonance (RDNMR) of a single InSb two-dimensional electron gas (2DEG) at elevated temperatures up to 4 K. The RDNMR signal of 115In in the simplest pseudospin quantum Hall ferromagnet triggered by a large direct current shows a peak-dip line shape, where the nuclear relaxation time T1 at the peak and the dip is different but almost temperature independent. The large Zeeman, cyclotron, and exchange energy scales of the InSb 2DEG contribute to the persistence of the RDNMR signal at high temperatures.Comment: 11pages,3figure

    Quantized form factor shift in the presence of free electron laser radiation

    Full text link
    In electron scattering, the target form factors contribute significantly to the diffraction pattern and carry information on the target electromagnetic charge distribution. Here we show that the presence of electromagnetic radiation, as intense as currently available in Free Electron Lasers, shifts the dependence of the target form factors by a quantity that depends on the number of photons absorbed or emitted by the electron as well as on the parameters of the electromagnetic radiation. As example, we show the impact of intense ultraviolet and soft X-ray radiation on elastic electron scattering by Ne-like Argon ion and by Xenon atom. We find that the shift brought by the radiation to the form factor is in the order of some percent. Our results may open up a new avenue to explore matter with the assistance of laser

    Probing quantum fluctuation theorems in engineered reservoirs

    Full text link
    Fluctuation Theorems are central in stochastic thermodynamics, as they allow for quantifying the irreversibility of single trajectories. Although they have been experimentally checked in the classical regime, a practical demonstration in the framework of quantum open systems is still to come. Here we propose a realistic platform to probe fluctuation theorems in the quantum regime. It is based on an effective two-level system coupled to an engineered reservoir, that enables the detection of the photons emitted and absorbed by the system. When the system is coherently driven, a measurable quantum component in the entropy production is evidenced. We quantify the error due to photon detection inefficiency, and show that the missing information can be efficiently corrected, based solely on the detected events. Our findings provide new insights into how the quantum character of a physical system impacts its thermodynamic evolution.Comment: 9 pages, 4 figure

    Isolamento e seleção de bactérias com potencial para controle da antracnose da pupunheira.

    Get PDF
    Organizado por Patricia Póvoa de Mattos, Celso Garcia Auer, Rejane Stumpf Sberze, Katia Regina Pichelli e Paulo César Botosso
    corecore