49,418 research outputs found

    Quasinormal modes of asymptotically flat rotating black holes

    Full text link
    We study the main properties of general linear perturbations of rotating black holes in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry black holes (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the non-linear time evolution of Shibata and Yoshino for d=6,7 spacetime dimensions. We find that d=5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.Comment: 52 pages. 25 figure

    Mass distribution and structural parameters of Small Magellanic Cloud star clusters

    Full text link
    In this work we estimate, for the first time, the total masses and mass function slopes of a sample of 29 young and intermediate-age SMC clusters from CCD Washington photometry. We also derive age, interstellar reddening and structural parameters for most of the studied clusters by employing a statistical method to remove the unavoidable field star contamination. Only these 29 clusters out of 68 originally analysed cluster candidates present stellar overdensities and coherent distribution in their colour-magnitude diagrams compatible with the existence of a genuine star cluster. We employed simple stellar population models to derive general equations for estimating the cluster mass based only on its age and integrated light in the B, V, I, C and T1 filter. These equations were tested against mass values computed from luminosity functions, showing an excellent agreement. The sample contains clusters with ages between 60 Myr and 3 Gyr and masses between 300 and 3000 Mo distributed between ~0.5 deg. and ~2 deg. from the SMC optical centre. We determined mass function slopes for 24 clusters, of which 19 have slopes compatible with that of Kroupa IMF (2.3 +/- 0.7), considering the uncertainties. The remaining clusters - H86-188, H86-190, K47, K63 and NGC242 - showed flatter MFs. Additionally, only clusters with masses lower than ~1000 Mo and flatter MF were found within ~0.6 deg. from the SMC rotational centre.Comment: 12 pages, 19 figures. Includes another 29 full-page figures of supplementary material. Accepted for publication in the MNRA

    Light elements in stars with exoplanets

    Full text link
    It is well known that stars orbited by giant planets have higher abundances of heavy elements when compared with average field dwarfs. A number of studies have also addressed the possibility that light element abundances are different in these stars. In this paper we will review the present status of these studies. The most significant trends will be discussed.Comment: 10 pages, 6 figures. Submitted to the proceedings of IAU symposium 268: Light elements in the universe

    Maximum Entanglement in Squeezed Boson and Fermion States

    Full text link
    A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.Comment: 4 page

    ARES v2 - new features and improved performance

    Full text link
    Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library.Comment: 4 pages, 2 Figures; accepted in A&A; ARES Webpage: www.astro.up.pt/~sousasag/are

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks
    • …
    corecore